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Abstract

We propose inverse probability weighted estimators for the the local average treatment e ect (LATE) and the

local average treatment e ect for the treated (LATT) under instrumental variable assumptions with covariates. We

show that these estimators are asymptotically normal and e cient, and provide a higher order asymptotic mean

squared error expansion for the LATE estimator. When the (binary) instrument satis es a condition called one-sided

non-compliance, we propose a Hausman-type test of whether treatment assignment is unconfounded conditional on

some observables. The test is based on the fact that under one-sided non-compliance LATT coincides with the

average treatment e ect for the treated. We evaluate the e ect of JTPA training programs on the earnings of

participants to illustrate our methods. The unconfoundedness test suggests that treatment assignment among males is

based partly on unobservables. In contrast, the hypothesis of random treatment assignment cannot be rejected among

females.
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1 Introduction

Nonparametric estimation of average treatment effects from observational data is typically under-

taken under one of two types of identifying conditions. The unconfoundedness assumption, in its

weaker form, postulates that treatment assignment is mean-independent of potential outcomes con-

ditional on a vector of observed covariates. The requirement that given these observables no other

unobserved factor acts as a confounder for the mean effect is still a strong one and carries with it

considerable identifying power. In particular, the average treatment effect (ATE) and the average

treatment effect for the treated (ATT) are nonparametrically identified under this assumption.

On the other hand, if unobservable confounders exist then instrumental variables—related to the

outcome only through changing the likelihood of treatment—are typically utilized to learn about

treatment effects. Uncoupled with additional structural assumptions, the availability of an instru-

mental variable (IV) is however not sufficient to identify ATE or ATT. In general, the IV will only

identify the local average treatment effect (LATE; Imbens and Angrist 1994) and the local average

treatment effect for the treated (LATT; Frölich and Lechner 2006; Hong and Nekipelov 2008). If

one specializes to binary instruments, as we do in this paper, then the LATE and LATT param-

eters correspond to the average treatment effect over specific subgroups of the population. These

subgroups are however dependent on the choice of the instrument and are generally unobservable.

Partly for these reasons a number of authors have called into question the usefulness of LATE

for program evaluation (Heckman 1997; Heckman and Urzúa 2009; Deaton 2009). In most such

settings ATE and ATT are more natural and practically relevant parameters of interest—provided

that they can be credibly identified and accurately estimated.1

When using instrumental variables, empirical researchers are often called upon to tell a “story”

to justify their validity. As pointed out by Abadie (2003) and Frölich (2007), it is often easier to

argue that the relevant IV conditions hold if conditioning on a vector of observable covariates is

allowed. In particular, Frölich (2007) shows that in this scenario LATE is still nonparametrically

identified2 and proposes efficient estimators, based on nonparametric imputation and matching,

for this quantity. Given the possible need to condition on a vector of observables to justify the IV

1In fairness, some of the criticism in Deaton (2009) goes beyond LATE, and also applies to ATE/ATT

as a parameter of interest. See Imbens (2009) for a response to Deaton (2009).
2Of course, LATE will be nonparametrically identified in the subpopulations defined by the possible

values of the covariates. The point is that it is also unconditionally identified.
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assumptions, it is natural to ask whether treatment assignment itself might be unconfounded con-

ditional on the same (or maybe a larger or smaller) vector of covariates. In this paper we propose

a formal test of this hypothesis that relies on the availability of a specific kind of binary instrument

for which LATT=ATT (so that the latter parameter is also identified). Establishing unconfound-

edness under these conditions still offers at least two benefits: (i) it enables the estimation of an

additional parameter of interest (namely, ATE) and (ii) it generally allows more efficient estimation

of ATT than IV methods (we will argue this point in more detail later). To our knowledge this is

the first test in the literature aimed at this task.

More specifically, the contributions of this work are threefold. Firstly, given a (conditionally)

valid binary instrument, we propose alternative nonparametric IV estimators of LATE and LATT.

These estimators rely on weighting by the estimated propensity score and are computed as the

ratio of two estimators that are of the form proposed by Hirano et al. (2003), henceforth HIR.

While Frölich (2007) conjectures in passing that such an estimator of LATE should be efficient, he

does not provide a proof. We fill this gap in the literature and formally establish the first order

asymptotic equivalence of our LATE estimator and Frölich’s imputation/matching-based estimators

(these are given by the ratio of estimators proposed by Hahn 1998). We also demonstrate that our

LATT estimator is asymptotically efficient, i.e. first-order equivalent to that of Hong and Nekipelov

(2008).

Secondly, we go beyond first order asymptotics and undertake a more careful comparison of

LATE estimators based on imputation vs. inverse probability weighting through higher order

mean square expansions. These expansions build on and extend previous work by Kalyanaraman

(2009), Ichimura and Linton (2002) and Heckman et al. (1998), and can be employed to guide

bandwidth selection in finite samples. We show that neither estimator dominates in terms of mean

squared error, and offer some insight as to when one might outperform the other in finite samples.

A criterion for choosing between the two estimators in practice is also provided. The theory is

illustrated by a number of Monte Carlo exercises.

Thirdly, and most importantly, we propose a Hausman-type test for the unconfoundedness

assumption. On the one hand, if a binary instrument satisfying “one-sided non-compliance” (Frölich

and Melly 2008a) is available, then the LATT parameter associated with that instrument coincides

with ATT, and is consistently estimable using the estimator we proposed. (Whether one-sided

non-compliance holds is verifiable from the data.) On the other hand, if treatment assignment is
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unconfounded given a vector of covariates, ATT can also be consistently estimated using the HIR

estimator. If the unconfondedness assumption does not hold, then the HIR estimator will generally

converge to a different limit. Thus, the unconfoundedness assumption can be tested by comparing

our estimator of LATT with HIR’s estimator of ATT. Of course, if the validity of the instrument

itself is questionable, then the test should be more carefully interpreted as a joint test of the IV

conditions and the unconfoundedness assumption. We investigate the finite sample size and power

properties of our test using Monte Carlo simulations and apply it to data collected on training

programs administered under the Job Training Partnership Act (JTPA).3 Of interest is the effect

of program participation on subsequent earnings, and eligibility serves as a binary instrument. For

men we can strongly reject the hypothesis that the participation decision and potential earnings

are unconfounded conditional on an observed vector of covariates. In contrast, the hypothesis

of random treatment assignment cannot be rejected for women. Therefore, one can consistently

estimate the average treatment effect for women but not for men.

The rest of the paper is organized as follows. In Section 2 we present a framework for defining

and identifying causal effects nonparametrically. In Section 3 we propose nonparametric estimators

of LATE and LATT, describe their asymptotic properties (first and second order), and compare

our LATE estimator to Frölich’s. The test for the unconfoundedness assumption is presented in

Section 4, and the implications of unconfoundedness are discussed in more detail. Section 5 contains

Monte Carlo simulations designed to illustrate the theoretical results in the paper, and the empirical

application is given in Section 6. Section 7 summarizes and concludes. Proofs are collected in a

technical appendix.

2 The basic framework and identification results

The following IV framework, augmented by covariates, is now standard in the treatment effect

literature; see, e.g., Abadie (2003) or Frölich (2007) for a more detailed exposition. For each

population unit (individual) one can observe the value of a binary instrument Z ∈ {0, 1} and a

vector of covariates X ∈ Rk. For Z = z, the random variable D(z) ∈ {0, 1} specifies individuals’

potential treatment status withD(z) = 1 corresponding to treatment andD(z) = 0 to no treatment.

The actually observed treatment status is then given by D ≡ D(Z) = D(1)Z + D(0)(1 − Z).

3The same data set is analyzed by Abadie et al. (2002) and Frölich and Melly (2008b) among others.
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Similarly, the random variable Y (z, d) denotes the potential outcomes in the population that would

obtain if one were to set Z = z and D = d exogenously. The following assumptions, taken from

Abadie (2003) and Frölich (2007) with some modifications, describe the relationships between the

variables defined above and justify Z being referred to as an instrument:

Assumption 1 Let V =
(
Y (0, 0), Y (0, 1), Y (1, 0), Y (1, 1), D(1), D(0)

)′
. There exists a subset X1

of X such that

(i) (Moments): E(V ′V | X1) <∞.

(ii) (Instrument assignment): E(V | Z,X1) = E(V | X1) and E(V V ′ | Z,X1) = E(V | X1).

(iii) (Exclusion of the instrument): P [Y (1, d) = Y (0, d) | X1] = 1 for d ∈ {0, 1}.

(iv) (First stage): P [D(1) = 1 | X1] > P [D(0) = 1 | X1] and 0 < P (Z = 1 | X1) < 1.

(v) (Monotonicity): P [D(1) ≥ D(0) | X1] = 1.

Assumption 1(i) ensures the existence of the moments we will work with. Part (ii) states that,

conditional on X1, the instrument is exogenous with respect to the first and second moments of

the potential outcome and treatment status variables. This is satisfied, for example, if the value of

the instrument is completely randomly assigned. Part (iii) precludes the instrument from having a

direct effect on potential outcomes. Part (iv) postulates that the instrument is (positively) related

to the probability of being treated and implies that the distributions X1|Z = 0 and X1|Z = 1

have common support. Finally, the monotonicity of D(z) in z, required in part (v), allows for

three different types of population units with nonzero mass: compliers [D(0) = 0, D(1) = 1],

always takers [D(0) = 1, D(1) = 1] and never takers [D(0) = 0, D(1) = 0] (cf. Imbens and

Angrist 1994). Of these, compliers are actually required to have positive mass—part (iv) rules out

P [D(1) = D(0)] = 1. In light of these assumptions it is customary to think of Z as a variable that

indicates whether an exogenous incentive to obtain treatment is present or as a variable signaling

“intention to treat”. We will denote the conditional probability P (Z = 1 | X1) by q(X1) and refer

to it as the propensity score.

Given the exclusion restriction in part (iii), one can simplify the definition of the potential

outcome variables as Y (d) ≡ Y (1, d) = Y (0, d), d = 0, 1. The actually observed outcomes are then

given by Y ≡ Y (D) = Y (1)D + Y (0)(1 − D). The LATE (≡ τ) and LATT (≡ τt) parameters

associated with the instrument Z are defined as

τ ≡ E[Y (1)− Y (0) | D(1) = 1, D(0) = 0]

τt ≡ E[Y (1)− Y (0) | D(1) = 1, D(0) = 0, D = 1].
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LATE, originally due to Imbens and Angrist (1994), is the average treatment effect in the complier

subpopulation. The LATT parameter was considered, for example, by Frölich and Lechner (2006)

and Hong and Nekipelov (2008). LATT is the average treatment effect among those compliers who

actually receive the treatment. Of course, in the subpopulation of compliers the condition D = 1 is

equivalent to Z = 1, i.e. LATT can also be written as E[Y (1)− Y (0) | D(1) = 1, D(0) = 0, Z = 1].

In particular, if Z is an instrument that satisfies Assumption 1 unconditionally (say Z is assigned

completely at random), then LATT coincides with LATE. While LATT may well be an interesting

parameter in its own right, our interest in it is motivated mainly by the fact that it can serve as

a bridge between the IV assumptions and unconfoundedness (this connection will be developed

shortly).

Under Assumption 1 one can also interpret LATE/LATT as the ATE/ATT of Z on Y divided

by the ATE/ATT of Z on D. More formally, define W (z) ≡ D(z)Y (1) + (1 − D(z))Y (0) and

W ≡ W (Z) = ZW (1) + (1− Z)W (0). It is easy to see that W = DY (1) + (1−D)Y (0) = Y and,

as we show in Appendix A,

τ = E[W (1)−W (0)]
/
E[D(1)−D(0)] (1)

τt = E[W (1)−W (0) | Z = 1]
/
E[D(1)−D(0) | Z = 1]. (2)

The quantities on the rhs of (1) and (2) are nonparametrically identified from the joint distribution

of the observables (Y,D,Z,X1). In particular, we present the following identification result:

Theorem 1 Under Assumption 1,

E[W (1)−W (0)] = E

[
ZY

q(X1)
− (1− Z)Y

1− q(X1)

]
≡ ∆ (3)

E[D(1)−D(0)] = E

[
ZD

q(X1)
− (1− Z)D

1− q(X1)

]
≡ Γ (4)

E[W (1)−W (0)|Z = 1] = E

[
q(X1)

(
ZY

q(X1)
− (1− Z)Y

1− q(X1)

)]/
E[q(X1)] ≡ ∆t (5)

E[D(1)−D(0)|Z = 1] = E

[
q(X1)

(
ZD

q(X1)
− (1− Z)D

1− q(X1)

)]/
E[q(X1)] ≡ Γt. (6)

That is, τ = ∆/Γ and τt = ∆t/Γt.

These results are not entirely new in the literature—they are implied by, for example, Theorem

3.1 in Abadie (2003). The equality τ = ∆/Γ is also stated by Frölich (2007). While the result

τt = ∆t/Γt is strictly speaking new, it is not very surprising. For easy reference, a proof for

Theorem 1 is provided in Appendix A.
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We now turn to the discussion of unconfoundedness, also termed “ignorable treatment assign-

ment” by Rubin (1978). We say that treatment assignment is unconfounded conditional on a subset

X2 of the vector X if

Assumption 2 (Unconfoundedness): Y (1) and Y (0) are mean-independent of D conditional on

X2, i.e. E[Y (d) | D,X2] = E[Y (d) | X2], d ∈ {0, 1}.

Assumption 2 is stronger than Assumption 1 in the sense that it rules out selection to treatment

based on unobservable factors and permits nonparametric identification of ATE = E[Y (1)− Y (0)]

and ATT = E[Y (1) − Y (0) | D = 1].4 As mentioned above, these parameters are often of more

interest to decision makers than local treatment effects, but are not generally identified under

Assumption 1 alone. A partial exception is when the instrument Z satisfies a strengthening of the

monotonicity property called one-sided non-compliance (Frölich and Melly 2008a):

Assumption 3 (One-sided non-compliance): P [D(0) = 0] = 1.

Assumption 3 means that those individuals for whom Z = 0 are excluded from the treatment

group, while those for whom Z = 1 generally have the option to accept or decline treatment

(e.g., Z might represent eligibility to receive treatment). Hence, there are no always-takers; non-

compliance with the intention-to-treat variable Z is only possible when Z = 1. More formally, for

such an instrument D = ZD(1), and so D = 1 implies D(1) = 1 (the treated are a subset of the

compliers). Therefore,

LATT = E[Y (1)− Y (0) | D(1) = 1, D(0) = 0, D = 1]

= E[Y (1)− Y (0) | D(1) = 1, D = 1]

= E[Y (1)− Y (0) | D = 1] = ATT.

Thus, under one-sided non-compliance, ATT=LATT. The ATE parameter, on the other hand,

remains generally unidentified under Assumptions 1 and 3 alone.

In Section 4 we will show how one can test Assumption 2 when a binary instrument, valid

conditional on X1 and satisfying one-sided non-compliance, is available. Frölich and Lechner (2006)

also consider some consequences for identification of the IV assumption and unconfoundedness

4For example, ATE is identified by an expression analogous to (5): replace Z with D and q(X1) with

p(X2) = P (D = 1 | X2). Similarly, ATT is identified by an expression analogous to (6): make the same

substitutions as above.
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holding simultaneously (without one-sided non-compliance), but they do not discuss estimation by

inverse probability weighting, propose a test, or draw out implications for efficiency.

3 The estimators and their asymptotic properties

3.1 Inverse propensity weighted estimators of LATE and LATT

Let {(Yi, Di, Zi, X1i)}ni=1 denote a random sample of observations on (Y,D,Z,X1). The proposed

inverse probability weighted estimators for τ and τt are based on sample analog expressions for (3)

through (6):

τ̂ =
n∑
i=1

{
ZiYi
q̂(X1i)

− (1− Zi)Yi
1− q̂(X1i)

}/ n∑
i=1

{
ZiDi

q̂(X1i)
− (1− Zi)Di

1− q̂(X1i)

}
,

τ̂t =
n∑
i=1

q̂(X1i)

{
ZiYi
q̂(X1i)

− (1− Zi)Yi
1− q̂(X1i)

}/ n∑
i=1

q̂(X1i)

{
ZiDi

q̂(X1i)
− (1− Zi)Di

1− q̂(X1i)

}
,

where q̂(·) is a suitable nonparametric estimator of the the propensity score function q(x1) =

E(Z | X1 = x1). In this paper we use local polynomial regression to estimate q(·). The first

order asymptotic results presented in Section 3.2 do not depend critically on this choice—the same

conclusions could be obtained under similar conditions if other estimators of q(·) were used instead.5

In contrast, the second order results presented in Section 3.3 are specific to this estimator.

The local polynomial regression estimator of a conditional mean function solves a weighted

least squares problem at each point of evaluation. These regressions are local in the sense that the

weights assigned to observations decrease rapidly with the distance from the point of evaluation.

For example, if X1 is a scalar, then for any given point x1 in the support of X1, q(x1) can be

estimated by the constant term β̂0 in a regression of the form

min
β̂0,...,β̂p

n∑
i=1

K

(
X1i − x1

h

)[
Zi − β̂0 − β̂1(X1i − x1)− . . .− β̂p(X1i − x1)p

]2
, (7)

where K(·) is a weighting function (kernel) and h is a smoothing parameter (bandwidth). The

parameter p is referred to as the order of the estimator. If X1 is higher dimensional then all powers

5For example, HIR employ the series logit estimator. A minor disadvantage of local polynomial regression

is that q̂ is not necessarily bounded between 0 and 1. Therefore, a trimmed estimate might be preferred in

practice. As far as asymptotic theory is concerned, we will handle this issue by assuming that the propensity

score is bounded away from 0 and 1. This is mainly for convenience—we could consider an explicit trimming

rule instead at the expense of complicating the exposition.
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of all components of X1 − x1 up to order p, as well as all unique cross-products up to order p, are

included in (7) as additional regressors.

The estimators τ̂ and τ̂t call for estimating the propensity score at each sample observation X1i

rather than at fixed points in the support of X1. In computing q̂(X1i), we use the leave-one-out

version of the estimator, i.e. the sum in (7) runs over all observations except the ith one. Some of

the more delicate second-order asymptotic results are dependent on this construction.

3.2 First order asymptotic results

We now state conditions under which τ̂ and τ̂t are
√
n-consistent, asymptotically normal and

efficient.

Assumption 4 (Distribution of X1): (i) The distribution of the r-dimensional vector X1 is abso-

lutely continuous with probability density f(x); (ii) the support of X1, denoted X , is a Cartesian

product of compact intervals; (iii) f(x) is twice continuously differentiable, bounded above, and

bounded away from 0 on X .

Though standard in the literature, this assumption is fairly restrictive in that it rules out

discrete covariates. This is mostly a matter of convenience; working with continuous X1 makes the

use of standard nonparametric regression techniques straightforward. Discrete variables could also

be allowed in X1 at the expense of more cumbersome notation and the modification of some of the

technical conditions. Alternatively, one can partition the population by the possible values of the

discrete covariates and carry out the analysis in each subpopulation. We will demonstrate how to

implement this approach in the empirical section of this paper.

Next we impose restrictions on various conditional moments of Y , D and Z, starting with the

propensity score function.

Assumption 5 (Propensity Score): (i) q(x1) is continuously differentiable of order q̄ > r; (ii) q(x1)

is bounded away from zero and one on X .

In addition, we define the following conditional moments: mz(x1) = E(Y | X1 = x1, Z = z),

µz(x1) = E(D | X1 = x1, Z = z), s2
z(x1) = var(Y | X1 = x1, Z = z), σ2

z(x1) = var(D | X1 =

x1, Z = z), and cz(x1) = cov(Yz, Dz | X1 = x1, Z = z). Then:

Assumption 6 (Conditional Moments of Y and D): mz(x1), µz(x1), s2
z(x1), σ2

z(x1), cz(x1) are

continuously differentiable over X for z = 0, 1.
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The last two assumptions specify the estimator used for the propensity score function.

Assumption 7 (Kernel Function): (i) The kernel function K(u) is supported on [−1, 1]r and is

symmetric in each argument; (ii) K(u) is continuously differentiable in each argument.

Assumption 8 (Propensity Score Estimator): The propensity score function is estimated by leave-

one-out local polynomial regression of order r with the bandwidth sequence hn satisfying nh2r+2
n →

0 and nh2r
n / log n→∞.

The first-order asymptotic properties of τ̂ and τ̂t are stated in the following theorem.

Theorem 2 (Asymptotic properties of τ̂ and τ̂t): Suppose that Assumption 1 and Assumptions 4

through 8 are satisfied. Then:

(a)
√
n(τ̂ − τ)

d→ N (0,V) and
√
n(τ̂t − τt)

d→ N (0,Vt), where V = E[ψ2(Y,D,Z,X1)] and

Vt = E[ψ2
t (Y,D,Z,X1)] with the functions ψ and ψt given by

ψ(y, d, z, x1)

=
1

Γ

{
z
[
y −m1(x1)− τ(d− µ1(x1))

]
q(x1)

−
(1− z)

[
y −m0(x1)− τ(d− µ0(x1))

]
1− q(x1)

+m1(x1)−m0(x1)− τ [µ1(x)− µ0(x1)]

}
,

and

ψt(y, d, z, x1)

=
q(x1)

QΓt

{
z
[
y −m1(x1)− τt(d− µ1(x))

]
q(x1)

−
(1− z)

[
y −m0(x1)− τt(d− µ0(x1))

]
1− q(x1)

+
z
[
m1(x1)−m0(x1)− τt(µ1(x1)− µ0(x1))

]
q(x1)

}
,

with Q = E(Z).

(b) V is equal to the semiparametric efficiency bound for LATE without the knowledge of q(x1)

(c) Vt is equal to the semiparametric efficiency bound for LATT without the knowledge of q(x1).
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Theorem 2 follows from the fact that, under the conditions stated, τ̂ and τ̂t can be expressed

as asymptotically linear with influence functions ψ and ψt, respectively:

√
n
(
τ̂ − τ) =

1√
n

n∑
i=1

ψ(Yi, Di, Zi, X1i) + op(1), (8)

√
n
(
τ̂t − τt

)
=

1√
n

n∑
i=1

ψt(Yi, Di, Zi, X1i) + op(1). (9)

These representations are developed in Appendix B. The semiparametric efficiency bounds refer-

enced in part (b) and (c) of Theorem 2 are derived in Frölich (2007) and Hong and Nekipelov (2008),

respectively. To use Theorem 2 for statistical inference, one needs consistent estimators for V and

Vt. Such estimators can be obtained by constructing (uniformly) consistent estimates for ψ and

ψt and then averaging the squared estimates over the sample observations {(Yi, Di, Zi, X1i)}ni=1.

In estimating ψ and ψt, one replaces the functions mz(x1), µz(x1) and q(x1) with nonparametric

estimators that are uniformly consistent over X . The quantities Γ, Γt and Q are also replaced with

sample analogs.

Theorem 2 shows that the inverse probability weighted estimators of LATE and LATT presented

in this paper are first order asymptotically equivalent to the matching/imputation based estimators

developed by Frölich (2007) and Hong and Nekipelov (2008). Our point estimators are easier

to implement in that they only require nonparametric estimation of q(x1), while matching or

nonparametric imputation requires estimates for mz(x1) and µz(x1), z = 0, 1 as well. However,

this advantage disappears if an estimate of the asymptotic variance is also desired.

We will now undertake a more careful comparison of the inverse probability weighted and

imputation estimators based on higher order mean square expansions.

3.3 Second order asymptotic results and bandwidth selection

To gain a better approximation to the finite sample properties of the inverse probability weighted

estimators versus the imputation based estimators, we derive and compare higher order asymptotic

mean squared error (AMSE) expansions. Since this is a tedious and notation-heavy exercise, we

focus exclusively on the LATE parameter and the case where X1 is a scalar (r = 1). Based on

the results we suggest a data-driven procedure to pick the bandwidth for our estimator in finite

samples.

Let ∆̂ and Γ̂ denote estimators of ∆ = E[W (1)−W (0)] and Γ = E[D(1)−D(0)], respectively.

In particular, we will consider two types of estimators: (i) a bias-corrected version of the inverse
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probability weighted estimator (denoted ∆̂b and Γ̂b) and (ii) a nonparametric imputation estimator

(denoted ∆̂m and Γ̂m). More specifically, ∆̂b and Γ̂b are given by the numerator and denominator

of τ̂ , respectively, minus bias correction terms suggested by Ichimura and Linton (2002). The exact

formulas are stated in Appendix C. The imputation estimators are taken from Frölich (2007) and

are given by

∆̂m =
1

n

n∑
i=1

[m̂1(X1i)− m̂0(X1i)] and Γ̂m =
1

n

n∑
i=1

[µ̂1(X1i)− µ̂0(X1i)],

where m̂z(·) and µ̂z(·) are nonparametric estimates of the functions mz(·) and µz(·), respectively.

We assume that all nonparametric regressions required to compute ∆̂b, Γ̂b, ∆̂m and Γ̂m are estimated

by local linear regression; for the inverse probability weighted estimator the propensity score must

be estimated by the leave-one-out version of the estimator.

Both estimators of ∆ and Γ are asymptotically linear and share the same influence function:

√
n(∆̂e −∆) =

1√
n

n∑
i=1

δi + op(n
−α) and

√
n(Γ̂e − Γ) =

1√
n

n∑
i=1

γi + op(n
−α), e = b,m (10)

where α ≥ 0, δi = δ(Yi, Di, Zi, X1i), γi = γ(Yi, Di, Zi, X1i) with E(γi) = E(δi) = 0 (Lemma 2 in

Appendix B provides explicit expressions for δ and γ). For e = b and α = 0, these representations

are based on Ichimura and Linton (2002); for e = m and α = 0, they follow from Heckman et al.

(1998) and Frölich (2007). We extend these results by showing that (10) holds even for α = 1
10 . As

we will shortly see, our AMSE expansion relies on this faster rate of convergence.

The LATE estimators of interest are of the form ∆̂/Γ̂ (as the following discussion pertains to

both types of estimators, subscripts are omitted). Taking the second order Taylor expansion of this

ratio around the point ∆/Γ yields

∆̂

Γ̂
− ∆

Γ
=

1

Γ
(∆̂−∆)− ∆

Γ2
(Γ̂− Γ)− 1

Γ2
(∆̂−∆)(Γ̂− Γ) +

2∆

Γ3
(Γ̂− Γ)2 + op(n

−1) (11)

Grouping the terms on the rhs in a specific way, we take the square of both sides and rescale by n:

n

(
∆̂

Γ̂
− ∆

Γ

)2

=
√
n

(
1

Γ
(∆̂−∆)− ∆

Γ2
(Γ̂− Γ)

)2

(12)

− 2√
n

(
1

Γ

√
n(∆̂−∆)− ∆

Γ2

√
n(Γ̂− Γ)

)(
1

Γ2
n(∆̂−∆)(Γ̂− Γ) +

2∆

Γ3
n(Γ̂− Γ)2

)
(13)

+Op(n
−1) (14)
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To approximate the MSE of ∆̂/Γ̂, we consider the expectation of the terms (12) and (13). We show

that for suitable choices of h, consistent with Assumption 8, these expectations can be further

expanded as a sum of terms of order O(1), O(n−3/5) and o(n−3/5). Our MSE approximation

consists of retaining the terms O(n−3/5) or larger and ignoring those o(n−3/5), which of course

includes the expectation of (14).6

More specifically, for both types of estimators the expectation of (12) can be approximated as

E

[
√
n

(
1

Γ
(∆̂−∆)− ∆

Γ2
(Γ̂− Γ)

)2
]

= C0 + C1n
−1h−1 + C2nh

4 + o(n−1h−1 + nh4), (15)

where C0, C1 and C2 are positive constants. For ∆̂ = ∆̂b and Γ̂ = Γ̂b, this expansion follows from

Theorem 2 in Ichimura and Linton (2002). On the other hand, for ∆̂ = ∆̂m and Γ̂ = Γ̂m, equation

(15) is a consequence of Lemma 4.3 in Kalyanaraman (2009).7 The expectation of the term (13)

can be evaluated by substituting in the influence function representations of ∆ and Γ given in (10).

Straightforward calculations (shown in Appendix C) yield:

− 2√
n
E

[(
1

Γ

√
n(∆̂−∆)− ∆

Γ2

√
n(Γ̂− Γ)

)(
1

Γ2
n(∆̂−∆)(Γ̂− Γ) +

2∆

Γ3
n(Γ̂− Γ)2

)]
= − 2

nΓ3
E[(δ1 − τγ1)δ1γ1]− 4τ

nΓ3
E[(δ1 − τγ1)γ2

1 ] + o(n−α−1/2). (16)

Suppose that h ∝ n−2/5. (As will be argued shortly, this choice is not only consistent with

Assumption 8, but is also optimal in the sense of minimizing MSE.) For this rate choice, the second

and third terms in (15) are both O(n−3/5), while the remainder is o(n−3/5). The first two terms in

(16) are O(n−1), and hence o(n−3/5). Thus, the desired expansion is given by the first three terms

in (15) provided that −α − 1
2 ≤ −

3
5 , i.e. α ≥ 1

10 . Lemmas 4 and 5 in Appendix C show that for

both types of estimators it is indeed possible to take α = 1
10 in (10).

The following theorem summarizes our MSE expansion and provides explicit expressions for the

constants C0, C1 and C2 for both estimators. The conditions stated in Section 3.2 are sufficiently

strong to deliver the results. To state the theorem, let Ỹ = Y − τD, and for any previously defined

6Of course, Xn = op(1) implies E(Xn) = o(1) only under certain regularity conditions such as uniform

integrability of the sequence Xn. Following most of the related literature, we do not explicitly verify or

impose such regularity conditions.
7Application of the cited results is made possible by regarding (12) as the asymptotic MSE of the combined

“estimator” 1
Γ (∆̂− τ Γ̂) of the parameter 1

Γ (∆− τΓ) = 0; see Appendix C for details. This obviates the need

to consider explicitly the covariance between ∆̂ and Γ̂ in evaluating (12).
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piece of notation, let the tilde accent denote replacing Y with Ỹ in the definition of that object.

E.g., m̃1(x1) = E[Ỹ | X1 = x1, Z = 1], etc. Further, let τ̂b = ∆̂b/Γ̂b and τ̂m = ∆̂m/Γ̂m.

Theorem 3 Suppose that Assumption 1 and Assumptions 4 through 8 are satisfied with r = 1. If,

in addition, h ∝ n−2/5, then:

E[n(τ̂b − τ)2] = F0 + F1n
−1h−1 + F2nh

4 + o(n−1h−1 + nh4), (17)

E[n(τ̂m − τ)2] = G0 +G1n
−1h−1 +G2nh

4 + o(n−1h−1 + nh4), (18)

where

F0 = E[ψ2(Y,D,Z,X1)],

F1 =
‖K‖2

Γ2
E

{
1

f(X1)

[1− q(X1)

q2(X1)
s̃2

1(X1) +
q(X1)

(1− q(X1))2
s̃2

0(X1)
]}

+
3‖K −K ∗K‖2

Γ2
E

{
1

f(X1)

[1− q(X1)

q(X1)
m̃1(X1)− q(X1)

1− q(X1)
m̃0(X1)

]2
}
,

F2 =
ν2

2(K)

Γ2

(
E

[
q′′(X1)

(
m̃1(X1)

q(X1)
+

m̃0(X1)

1− q(X1)

)])2

,

and

G0 = E[ψ2(Y,D,Z,X1)],

G1 =
‖K‖2

Γ2
E

[
1

f(X1)

( s̃2
1(X1)

q(X1)
+

s̃2
0(X1)

1− q(X1)

)]
,

G2 =
ν2

2(K)

4Γ2

(
E[m̃′′1(X1)− m̃′′0(X1)]

)2
,

with

ν2(K) =

∫
u2K(u)du, ‖K‖2 =

∫
K2(u)du, K ∗K(t) =

∫
K(u)K(t− u)du.

Comparing the coefficients in the two expansions, one can observe that neither estimator gen-

erally dominates the other in terms of variance (F1 vs. G1) or bias (F2 vs. G2). There are some

special cases in which these quantities are easier to compare, but they are fairly limited in scope.

For example, if q(x) is roughly linear, then F2 will be small, while G2 can still be large. But if in

addition q(x) ≈ 0.5 for most of the support of X1, then G1 will be smaller than F1, so the joint

effect is ambiguous. Alternatively, if the difference between m̃0 and m̃1 is approximately linear in

x, then G2 will be small, while F2 might still be large or small. If m̃0(x) ≡ 0 (and hence s̃2
0(x) ≡ 0),

then F1 will be larger than G1 when q(x) is close to zero on most of X , etc.

14



More importantly, the expansions given in Theorem 3 can be used to guide finite sample band-

width selection for both estimators. We look for an optimal bandwidth sequence of the form

h = Anα. Ignoring the remainder terms in (17) and (18), the optimal rate must equalize n−1h−1

and nh4, yielding h ∝ n−2/5. To pin down the constant of proportionality, one solves

min
A≥0

(F1A
−1n−

3
5 + F2A

4n−
3
5 ) and min

A≥0
(G1A

−1n−
3
5 +G2A

4n−
3
5 ),

which gives A∗b = [F1/(4F2)]1/5 and A∗m = [G1/(4G2)]1/5. Then F1n
−1h−1 + F2nh

4 < G1n
−1h−1 +

G2nh
4, and hence τ̂b is predicted to outperform τ̂m in terms of finite sample MSE, if and only if

(F1/G1)4 < G2/F2. (19)

Using a pilot bandwidth, one can consistently estimate Â∗b , Â
∗
m and the ratios in (19) based on

the sample analog principle. Then one can compare the two sides of (19) to judge whether τ̂b can

be expected to outperform τ̂m when bandwidth is chosen as Â∗bn
−2/5 and Â∗mn

−2/5, respectively.

Thus, we have a practically feasible criterion for choosing between the two estimators.

Two comments about the bandwidth selection procedure are in order. First, the procedure is

valid only if F2 > 0 and G2 > 0. As suggested above, these conditions do not always hold. In this

case the bias-variance tradeoff stated in (18) disappears, and the procedure calls for infinitely large

bandwidth (extreme oversmoothing). Kalyanaraman (2009) proposes a regularized mean square

objective to deal with this problem; pursuing this approach is beyond the scope of this paper.

Second, the argument given might seem somewhat circular in that Theorem 3 directly assumes

h ∝ n−2/5. Nevertheless, one can formally expand the MSE of these estimators as

C0 + C1n
−1h−1 + C2nh

4+remainder

for the range of bandwidths given in Assumption 8. For h not proportional to n−2/5, it is however

not generally possible to argue that the remainder term is of order o(n−1h−1+nh4); hence, dropping

the remainder in choosing the optimal bandwidth is not justified. If one assumes that the remainder

term can be dropped, it is clear that the optimal tradeoff between the remaining two terms that

depend on h occurs when h ∝ n−2/5. What Theorem 3 shows is that this assumption is self-

confirming, i.e. the remainder term is indeed negligible when h ∝ n−2/5.
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4 Testing for unconfoundedness

4.1 The proposed test procedure

If treatment assignment is unconfounded conditional on a subset X2 of X, then, under regularity

conditions, one can consistently estimate ATT (≡ βt) using the estimator proposed by HIR:

β̂t =
n∑
i=1

p̂(X2i)
( DiYi
p̂(X2i)

− (1−Di)Yi
1− p̂(X2i)

)/ n∑
i=1

p̂(X2i),

where p̂(x) is a suitable nonparametric estimator of p(x2) = P (D = 1|X2 = x2). (HIR originally

proposed the series logit estimator, but local polynomial regression can also be used.) Given a

binary instrument that is valid conditional on a subset X1 of X, one-sided non-compliance implies

ATT=LATT, and hence ATT can also be consistently estimated by τ̂t. On the other hand, if

the unconfoundedness assumption does not hold, then τ̂t is still consistent, but β̂t is generally not

consistent. Hence, we can test the unconfoundedness assumption (or at least a necessary condition

of it) by comparing τ̂t with β̂t. Let ρd(x2) = E[Y (d)|X2 = x2] = E[Y |D = d,X2 = x2], d = 0, 1,

p = P (D = 1), and

φt(y, d, x2)

=
p(x2)

p

{
d(y − ρ1(x2))

p(x2)
− (1− d)(y − ρ0(x2))

1− p(x2)
+
d(ρ1(x2)− ρ0(x2)− βt)

p(x2)

}
.

The asymptotic properties of the difference between τ̂t and β̂t are summarized in the following

theorem:

Theorem 4 Suppose that Assumptions 1 through 8 are satisfied. If, in addition, P [D(1) = 1] 6= 1,

P [Y (0) = 0] 6= 1 and some additional regularity conditions stated by HIR hold, then

√
n(τ̂t − β̂t)

d→ N(0, σ2),

where σ2 = E[(ψt(Y,D,Z,X1)− φt(Y,D,X2))2].

The additional regularity conditions referred to in Theorem 4 restrict the distribution of X2,

impose smoothness of p(x2), etc. For the test to “work”, it is also required that P [D(1) = 1] 6= 1

and P [Y (0) = 0] 6= 1. If P [D(1) = 1] = 1, then one-sided non-compliance implies P [D = Z] = 1.

Therefore, instrument validity and unconfoundedness are one and the same. On the other hand, if
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P [Y (0) = 0] = 1, then Y = DY (1), and so (1 − Z)Y = 0 and (1 − D)Y = 0. Hence, our LATT

estimator reduces to

τ̂t =
n∑
i=1

ZiYi

/ n∑
i=1

ZiDi =
n∑
i=1

DiYi

/ n∑
i=1

Di,

where the second equality holds since ZY = ZDY (1) = DY (1) = DY and ZD = D. It can

be shown that τ̂t =
∑n

i=1DiYi/
∑n

i=1Di is asymptotically equivalent to β̂t in the sense that the

difference between the two is op(n
−1/2). That is, whether or not the unconfoundedness assumption

holds,
√
n(τ̂t − β̂t) = op(1) and the test is not valid.

Under the unconfoundedness assumption, HIR show that the asymptotic linear representation

of β̂t is given by

√
n(β̂t − βt) =

1√
n

n∑
i=1

φt(Yi, Di, Xi) + op(1).

Theorem 4 follows directly from this result. Let ψ̂t(·) and φ̂t(·) be (uniformly) consistent estimators

of ψt and φt obtained, e.g., by the sample analog principle (see the discussion after Thorem 2). A

consistent estimator for σ2 can then be constructed as

σ̂2 =
1

n

n∑
i=1

(
φ̂t(Yi, Di, Xi)− ψ̂t(Yi, Di, Zi, Xi)

)2
.

As a result, one can use a simple z-test with the statistic
√
n(τ̂t−β̂t)/σ̂ to test the unconfoundedness

assumption. Since the difference between LATT and ATT can generally be of either sign, a two-

sided test is appropriate.

The proposed test is quite flexible in that it does not place any restrictions on the relationship

between X1 and X2. The two vectors can overlap, be disjoint, or one might be contained in

the other. The particular case in which X2 is empty corresponds to testing whether treatment

assignment is completely random. Finally, we note that if the instrument is not entirely trusted,

then the interpretation of the test should be more conservative; namely, it should be regarded as a

joint test of unconfoundedness and the IV conditions.

4.2 The implications of unconfoundedness

What are the benefits of (potentially) having the unconfoundedness assumption at one’s disposal

in addition to IV conditions? An immediate one is that the ATE parameter also becomes identified
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and can be consistently estimated, for example, by the inverse probability weighted estimator

proposed by HIR or by nonparametric imputation as in Hahn (1998).

A more subtle consequence has to do with the efficiency of β̂t and τ̂t as estimators of ATT. If

an instrument satisfying one-sided compliance is available, and the unconfoundedness assumption

holds at the same time, then both estimators are consistent. Furthermore, the asymptotic variance

of τ̂t attains the semiparametric efficiency bound that prevails under the IV conditions alone,

and the asymptotic variance of β̂t attains the corresponding bound that can be derived from the

unconfoundedness assumption alone. The simple conjunction of these two identifying conditions

does not generally permit an unambiguous ranking of the efficiency bounds even when X1 = X2.

Nevertheless, by taking appropriate linear combinations of β̂t and τ̂t, one can obtain estimators

that are more efficient than either of the two. This observation is based on the following elementary

lemma:

Lemma 1 Let A0 and A1 be two random variables with finite variance. Define Aa = (1−a)A0+aA1

for any a ∈ R. Let ā = var(A0)−cov(A0,A1)
var(A1−A0) . Then:

(a) var(Aā) ≤ var(Aa) for all a ∈ R.

(b) var(Aā) < var(A0) when ā 6= 0, i.e. var(A0) 6= cov(A0, A1).

(c) var(Aā) < var(A1) when ā 6= 1, i.e. var(A1) 6= cov(A0, A1).

To be more specific, let β̂t(a) = (1 − a)β̂t + aτ̂t and Vt(a) = var[(1 − a)φti + aψti], where

ψti = ψt(Yi, Di, Zi, X1i) and φti = φt(Yi, Di, X2i). Then for any a ∈ R, β̂t(a) is consistent for τt

and is asymptotically normal with asymptotic variance Vt(a), i.e.
√
n(β̂t(a) − τt)

d→ N (0,Vt(a)).

The optimal weight ā can be obtained as

ā =
var(φt)− cov(φt, ψt)

var(φt) + var(ψt)− 2cov(φt, ψt)
,

so that Vt(ā) ≤ Vt(a) for all a ∈ R. In other words, β̂t(ā) will be the most efficient estimator among

all linear combinations of β̂t and τ̂t. Although ā is unknown in general, it can be consistently

estimated by

â =

∑n
i=1 φ̂t(Yi, Di, Zi, X1i)

(
φ̂t(Yi, Di, Zi, X1i)− ψ̂t(Yi, Di, X2i)

)∑n
i=1

(
φ̂t(Yi, Di, Zi, X1i)− ψ̂t(Yi, Di, X2i)

)2 .

Slutsky’s theorem implies that
√
n(β̂t(â)−τt) has the same asymptotic distribution as

√
n(β̂t(ā)−τt).
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If V ar(φt) = Cov(φt, ψt), then ā = 0, which implies that β̂t itself is more efficient than τ̂t (or

any linear combination of the two). We give sufficient conditions for this result.

Theorem 5 Suppose that Assumption 1 parts (i), (iii), (iv), (v) and Assumption 3 are satisfied,

and let V = (Y (0), Y (1)). If, in addition, X1 = X2 = X,

E(V | Z,D,X) = E(V | X) and E(V V ′ | Z,D,X) = E(V V ′ | X), (20)

then ā = 0.

The proof of Theorem 5 is provided in Appendix D. The conditions of Theorem 5 are stronger than

those of Theorem 4. The latter theorem only requires that the IV assumption and unconfoundedness

both hold at the same time, which in general does not imply the stronger joint mean-independence

conditions given in (20). If the null of unconfoundedness is accepted due to (20) actually holding,

then β̂t itself is the most efficient estimator of ATT in the class {β̂t(a) : a ∈ R}. Nevertheless, it

is in principle possible for unconfoundedness to hold and (20) to fail hence the conclusion is not

automatic.

5 Monte Carlo simulations

We present two small-scale Monte Carlo studies to check the finite sample accuracy of our MSE

approximations in Section 3.3 and to illustrate the size and power properties of the proposed test.

The data generating process is given by

Y = D(X + ε), D = Z · 1(X > ε), Z = 1[q(X) > U ],

where (X,U, ε, ν) are mutually independent uniform [0, 1] random variables and q(X), the propen-

sity score, is a given function. The model is chosen so that closed form expressions can be obtained

for the functions in terms of which the MSE expansion coefficients are defined. Thus the true value

of these coefficients can be computed without nonparametric estimation (only averaging over a very

large sample is required). LATE can also be computed analytically (it is equal to one).

In comparing the inverse probability weighted and imputation estimators of LATE we vary the

functional parameter q(X). The first specification is given by q1(X) = Λ(−1 + X), where Λ(·)

is the logistic cdf. In this case q1(x) is approximately linear over the support of X so that F2

is very small. In particular, G2/F2 ≈ 2390 and (F1/G1)4 ≈ 7. By (19), this means that if the
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Table 1: MSE simulations

q(X) = q1(X) q(X) = q2(X)

MSE[
√
n(τ̂b − τ)] MSE[

√
n(τ̂m − τ)] MSE[

√
n(τ̂b − τ)] MSE[

√
n(τ̂m − τ)]

n h Approx. Sim. h Approx. Sim. h Approx. Sim. h Approx. Sim.

100 0.81 0.71 0.78 0.16 0.78 0.89 0.18 0.99 1.03† 0.16 0.89 1.01†

200 0.62 0.70 0.72 0.12 0.75 0.77 0.14 0.91 1.04 0.12 0.85 0.91

300 0.53 0.69 0.70 0.10 0.74 0.72 0.12 0.88 0.93 0.10 0.83 0.84

500 0.43 0.69 0.68 0.08 0.71 0.69 0.10 0.85 0.85 0.09 0.82 0.82

Note: h denotes the optimal bandwidth based on the higher order MSE approximation. Approx=the corre-

sponding approximate MSE. Sim=simulated (exact) MSE based on 5000 Monte Carlo repetitions. †Denotes

cases where median squared error was calculated due to a few large outliers. For q1(x) the asymptotic

variance (i.e., the leading term is the MSE expansion) is 0.68; for q2(x) it is 0.77.

optimal bandwidth given in Section 3.3 is used to compute both estimators, then τ̂b is expected to

outperform τ̂m in terms of MSE.8 This is confirmed by the simulations shown in the left panel of

Table 1. As the sample size increases, the accuracy of the MSE approximation improves and the

difference between the two estimators becomes smaller and smaller.

The second specification for q(X) is given by q2(X) = 0.5Λ(−33X + 85X2 − 55X3) + 0.25. In

this case q2(x) is non-monotonic and has a lot of curvature with G2/F2 ≈ 1 and (F1/G1)4 ≈ 19.

Therefore, τ̂m can expected to outperform τ̂b in finite samples, as seen in the right panel of Table 1.

Again, as the sample size increases, so does the accuracy of the approximation. In both examples

considered here the propensity score is safely bounded away from zero and one. If q(X) gets close

to these boundaries over a large part of the support of X, we found that the quality of the MSE

approximations can be rather poor even in moderately large samples.

To study the properties of our test statistic we use a slightly modified data generating process

for which Y (0) 6= 0 and we can control the extent to which selection to treatment depends on

8We calculate the theoretically optimal bandwidths based on the simulated (i.e., true) values of the

asymptotic MSE expansion coefficients. For smaller sample sizes some observations Xi may not have enough

neighbors within the radius of the optimal bandwidth to compute the necessary local linear regressions. For

these observations three times the theoretically optimal bandwidth is used. Such observations can still lead

to outlier LATE estimates.
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unobservables:

Y = (1−D)(X + ε), D = Z · 1[aε+ (1− a)ν > 0.25 + 0.5X], Z = 1[q(X) > U ],

where (X,U, ε, ν) are mutually independent uniform [0, 1] random variables, a ∈ [0, 1], and q(X) =

q1(X). Clearly, D(0) = 0 so that one-sided non-compliance is satisfied. For a = 0 treatment

assignment is unconfounded, but for a > 0, D and Y are correlated conditional on X (the larger

a, the stronger the correlation). Hence, we set a = 0 to study size control and a = 0.25, 0.5 and 1

to study power. We consider two different sample sizes: n = 100 and 300.

We use local linear regression with various bandwidths to compute the test statistic; in partic-

ular, for n = 100, we set h = 0.8, 1.6 and 2.4, and for n = 300, we set h = 0.6, 1.2 and 1.8. As a

reference point, we also implement the test using the series logit estimator (with up to quadratic

terms). Rejection rates of the proposed test, computed over 1000 Monte Carlo cycles, are shown

in Table 2 for nominal size equal to 5%.

An important finding is that size and power are rather sensitive to bandwidth choice; proper

size control, in particular, seems to require a fair amount of smoothing. Since the estimator is

implemented with the Epanechnikov kernel, supported on [−1, 1], bandwidths greater than one

imply that all sample observations receive non-zero weight in computing q̂(Xi), p̂(Xi), etc. As

expected, power increases with the parameter a as well as sample size. Series logit tends to be

conservative, especially for n = 100.

Table 2: Unconfoundedness test simulations

n = 100 n = 300

h = 0.8 h = 1.6 h = 2.4 SLE h = 0.6 h = 1.2 h = 1.8 SLE

a = 0 size 0.170 0.066 0.061 0.029 0.252 0.053 0.055 0.043

a = 0.25 power 0.285 0.190 0.177 0.054 0.450 0.319 0.325 0.200

a = 0.5 power 0.592 0.526 0.524 0.266 0.839 0.921 0.907 0.820

a = 1 power 0.906 0.959 0.950 0.835 0.996 1.000 1.000 1.000

Note: The simulated rejection rates are based on 1000 Monte Carlo repetitions; nominal size is 5%.

h=bandwidth used in computing local linear regressions. SLE=series logit.
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6 Empirical application

We apply our method to estimate the impact of JTPA training programs on subsequent earnings

and to test whether participation is unconfounded conditional on a vector of observables. Abadie

et al. (2002) and Frölich and Melly (2008a) use the same data set to examine the distributional

effect of this program on earnings; the data set is publicly available at the URL

http://econ-www.mit.edu/faculty/angrist/data1/data/abangim02

As explained by Abadie et al. (2002), the JPTA program involved collecting data specifically

for purposes of evaluation. At some of the service delivery sites, between Nov. 1987 and Sept. 1989,

applicants were randomly selected as eligible to receive a job-related service (classroom training,

on-the-job training, job search assistance, probationary employment, other) or were denied services

and excluded from the program for 18 months.9 Clearly, this random offer of services (Z) can be

used as an instrument for evaluating the effect of actual program participation (D) on earnings (Y ),

measured as the sum of earnings in the 30 month period following the eligibility decision. About

36 percent of those who were offered services chose not to participate; conversely, a small fraction

of applicants, less than 0.5 percent, ended up participating despite the fact that they were ruled

ineligible. Hence, the instrument satisfies one-sided non-compliance almost perfectly; the small

number of observations violating this condition were dropped from the sample. The total number

of observations is then 11,150; of these, 6,067 are female and 5,083 are male.

A number of covariates describing the socio-economic status of applicants are also available

in the data set. These are all dummy variables and are summarized in Table 3, along with the

variables discussed above. As Z is completely randomly assigned, and presumably has no direct

effect on the outcome, it is a valid instrument regardless of whether one conditions on additional

covariates. In all exercises presented in this section we will set X1 = X2 ≡ X, where X is some

subset of the covariates listed in Table 3. A further implication of random assignment is that

LATE=LATT for the instrument.

As all available covariates are discrete, one cannot use local polynomial regression to estimate

regression functions of X. An r-dimensional vector of dummy variables partitions the population

into 2r subpopulations, each corresponding to a different setting of X. One can then use data from

9The data set consists of 11,204 applicants who were categorized as adult males or females; data on youth

are not included.
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Table 3: JPTE variables

Variable name Definition Mean

Z =1 if offered any job-related service 0.6715

D =1 if actually participated 0.4309

Y =30-month earning following eligibility decision (dollars) 15,826

SEX =1 if male 0.4559

MINORITY =1 if black or Hispanic 0.3680

HS =1 if high school graduate (or GED) 0.7263

MS =marital status; =1 if married 0.3316

W13 =1 if worked less than 13 weeks past year 0.5183

BELOW30 =1 if below 30 years of age 0.4398

Notes: All dummy variable definitions are to be interpreted as “= 0 otherwise”. For HS, MS and W13

a few observations are recorded as strictly between zero and one. We treat all non-zero observations as

one. Means are computed after enforcing one-sided non-compliance. More detailed age group dummies are

available than the BELOW30 variable considered here. Some additional covariates are also available but not

listed or used; see Abadie et al. (2002).

each subpopulation to construct the required nonparametric estimates. For example, for a given

setting of X, the relative frequency of observations with Zi = 1 in the corresponding subsample is

a
√
n-consistent estimate of the value of q(X). Formally, for s ∈ {0, 1}r, let Ns =

∑n
i=1 1(Xi = s)

and q̂s = 1
Ns

∑n
i=1 1(Zi = 1, Xi = s). Then q̂(Xi) may be computed as

q̂(Xi) =
∑
s

q̂s1(Xi = s). (21)

Of course, as Z is randomly assigned, each q̂s will converge to the constant P (Z = 1), and one

could estimate this quantity simply by the unconditional sample mean 1
n

∑n
i=1 Zi. Nevertheless, it

is possible to show that using the “partitioned” estimator, i.e. exploiting the fact that Z is also valid

conditional on X, may lead to efficiency gains in estimating LATE and LATT.10 One can construct

p̂(Xi), m̂1(Xi), etc. analogously (these functions will not generally be trivial in X). The first order

asymptotic theory presented in this paper, including the test for unconfoundedness, remains valid

if these estimators are used in computing τ̂ , τ̂t and β̂t. The drawback of this approach is that if r

10Giving a formal proof of this claim is beyond the immediate scope of the paper. The result is similar to

Theorem 11 of Frölich and Melly (2008b).
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is even moderately large, then the sample at hand might contain very few or no observations from

certain subpopulations. (Of course, this is a problem for estimating nontrivial functions of X only.)

On the other hand, no bandwidth choice is required to implement the estimators.

With purely discrete covariates it is often natural to define subpopulations of special interest

using some components of X, say Xs, and estimate LATE/LATT and ATT within those subpop-

ulations. The unconfoundedness of treatment participation can then be tested separately within

each subpopulation w.r.t. X \Xs (which might be empty). Conducting such tests subpopulation

by subpopulation is not entirely equivalent to conducting a “joint” unconfoundedness test w.r.t.

the whole vector X, just as testing whether regression coefficients are individually zero is not equiv-

alent to testing whether they are all zero at the same time. Nevertheless, these individual tests can

provide additional insight. We now provide some concrete examples.

In our first exercise we simply set X = X1 = X2 = SEX. We estimate LATT and ATT

in the entire population as well as among males and females separately. We conduct an overall

unconfoundedness test w.r.t. X, and also individual tests of random treatment participation within

the two subpopulations. Results are shown in Table 4. The LATT estimator τ̂t is interpreted

as follows. Take, for example, the value 1916.4 for females. This means that female compliers

who actually participated in the program (i.e., were assigned Z = 1), are estimated to increase

their 30-month earnings by $1916.4 on average. Since Z is randomly assigned, this number can

also be interpreted as an estimate of LATE, i.e. the average effect among all compliers. Further,

by one-sided non-compliance, a third interpretation is that 1916.4 is an estimate of the female

ATT, i.e. the average effect of the program among all females that chose participation. The

corresponding standard error (547.8) shows that the effect is statistically significant. Turning to the

unconfoundedness tests, the hypothesis that treatment participation is unconfounded conditional

on gender has a p-value of 0.005 and hence is strongly rejected. The individual tests show strong

evidence of selection on unobservables within the male subpopulation but not at all among females.

This is valuable information that the overall test does not reveal.

As in Table 4 there are no additional covariates besides SEX, the estimator β̂t for males/females

is numerically equivalent to taking the difference between the mean earnings of treated males/females

and non-treated males/females. Since the hypothesis of random treatment participation cannot be

rejected for females, this figure can then be interpreted as a consistent estimate of ATE (as well as

ATT, of course). In contrast, β̂t is a biased and inconsistent estimate of male ATE. Furthermore,
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Table 4: X = SEX

τ̂t std(τ̂t) β̂t std(β̂t) std(τ̂t − β̂t) p-value

Subpop. Obs. (USD) (USD) (USD) (USD) (USD) Test stat. (2-sided)

Xs = ∅; X \Xs = SEX

All 11150 1828.1 (506.9) 2979.1 (313.1) (407.4) -2.825 0.005

Xs = SEX; X \Xs = ∅

Males 5083 1716.0 (916.4) 4035.6 (557.3) (740.7) -3.132 0.002

Females 6067 1916.4 (547.8) 2146.7 (346.4) (436.1) -0.528 0.597

Note: τ̂t is the inverse probability weighted IV estimator of LATT=ATT. β̂t is an estimator of ATT under

unconfoundedness. Numbers in parenthesis are standard errors.

using the results in Section 4, one can take a weighted average of τ̂t and β̂t to obtain a more efficient

estimate of female ATE/ATT. The estimated optimal combination puts nearly all weight on β̂t, so

the actual efficiency gain from doing so is negligible in this example. However, note that without

testing for (and accepting) the unconfoundedness assumption, the only valid estimate of female

ATT is τ̂t, which has a much larger standard error than β̂t.

In the second exercise we set X = X1 = X2 = (SEX, BELOW30, MINORITY, HS). We

perform three types of tests: (i) an overall unconfoundedness test w.r.t. X; (ii) conditioning

on the possible values of Xs = SEX, we perform two unconfoundedness tests w.r.t X \ Xs =

(BELOW30, MINORITY, HS) among males and females separately; (iii) conditioning on the pos-

sible values of Xs = X, we perform tests of random treatment assignment in each of the resulting

16 subpopulations. Results are reported in Table 5.

Comparing the LATT estimates for males, females and the whole population across Tables 4

and 5, we see that the numbers are reasonably close. Differences between the two sets of esti-

mates are due solely to the way the propensity score is estimated. Note the (very) slight drop in

standard errors in Table 5. Unconfoundedness conditional on X is rejected in the population as

a whole. There is again strong evidence of male participation being based on factors other than

BELOW30, MINORITY and HS, while female participation appears unconfounded with respect

to this set of covariates as well.11 Individual tests of random treatment participation within the 16

subpopulations tend not to reject except for one, or maybe two, male groups. The lack of stronger

11Even if the non-rejection for females in Table 4 is due to (Y (0), Y (1)) and D being fully independent, it

does not automatically follow that these variables are independent conditional on X.
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Table 5: X = (SEX, BELOW30, MINORITY, HS)

τ̂t std(τ̂t) β̂t std(β̂t) std(τ̂t − β̂t) p-value

Subpop. Obs. (USD) (USD) (USD) (USD) (USD) Test stat. (2-sided)

Xs = ∅; X \Xs = (SEX, BELOW30, MINORITY, HS)

All 11150 1810.3 (501.9) 2804.2 (312.6) (404.1) -2.460 0.014

Xs = SEX; X \Xs = (BELOW30, MINORITY, HS)

Males 5083 1805.9 (904.5) 3936.0 (554.8) (732.1) -2.909 0.004

Females 6067 1813.7 (545.3) 1912.4 (347.2) (434.6) -0.227 0.820

Xs = (SEX, BELOW30, MINORITY, HS); X \Xs = ∅

M, u. 30, minority, hs 614 1068.1 (2324.7) 2326.2 (1414.6) (1825.6) -0.689 0.491

M, u. 30, minority, no hs 235 5745.0 (3288.3) 3832.4 (2318.6) (3069.9) 0.623 0.533

M, u. 30, white, hs 990 805.8 (2162.7) 2976.4 (1308.0) (1710.2) -1.269 0.204

M, u. 30, white, no hs 425 7117.8 (3059.3) 6653.8 (1718.6) (2739.6) 0.169 0.865

M, o. 30, minority, hs 666 -502.9 (2400.2) 2858.8 (1464.6) (2053.1) -1.637 0.102

M, o. 30, minority, no hs 270 2874.9 (3831.6) 5091.5 (2401.1) (3136.8) -0.707 0.480

M, o. 30, white, hs 1354 1501.7 (1892.4) 4909.7 (1184.5) (1464.4) -2.327 0.020

M, o. 30, white, no hs 529 2160.6 (2703.1) 4180.9 (1613.7) (2207.4) -0.915 0.360

F, u. 30, minority, hs 830 1887.5 (1365.0) 913.0 (884.6) (1105.6) 0.881 0.378

F, u. 30, minority, no hs 297 1920.5 (2116.7) 293.6 (1143.1) (1837.5) 0.885 0.376

F, u. 30, white, hs 1097 2415.7 (1378.0) 2410.4 (849.3) (1082.6) 0.005 0.996

F, u. 30, white, no hs 416 62.5 (1773.4) 1292.5 (1150.0) (1375.2) -0.894 0.371

F, o. 30, minority, hs 858 2022.4 (1466.4) 1331.3 (942.4) (1218.1) 0.567 0.571

F, o. 30, minority, no hs 333 1065.0 (2019.8) 2668.5 (1189.4) (1714.1) -0.935 0.350

F, o. 30, white, hs 1689 1646.7 (1076.3) 2215.3 (711.9) (834.7) -0.681 0.496

F, o. 30, white, no hs 547 2242.7 (1731.1) 3445.7 (1002.9) (1370.5) -0.878 0.380

Note: τ̂t is the inverse probability weighted IV estimator of LATT=ATT. β̂t is an estimator of ATT under

unconfoundedness. Numbers in parenthesis are standard errors. M=male; F=female; u. 30=under 30 years

of age; o. 30=over 30 years of age; hs=high school diploma or GED.

rejection among males may be partly due to the relatively small number of observations available

in some of these groups. The general pattern shown in Table 5 turns out to be quite robust. If

one adds W13 or MS to X, uses finer age dummies, etc., individual tests of random treatment

participation in the resulting subpopulations tend not to reject perhaps with a couple of excep-

tions. Unconfoundedness within the male subpopulation is always rejected, but it is never rejected

among females. The p-value for unconfoundedness in the whole population is usually well below

5% as well. Thus, for females the value of β̂t reported in Table 5 can again be interpreted as an
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estimate of ATE/ATT. (Compared with Table 4, the value of β̂t has changed somewhat with the

incorporation of covariates, but its standard error is virtually the same.)

Finally, we caution that the unconfoundedness test developed in this paper is a pairwise test.

Thus, if the test is used in a sequential procedure where some of the tests are performed based on

the outcome of previous tests, then size distortions will occur. Of course, this caveat applies quite

generally in econometrics—consider, for example, specification testing in regression models based

on simple t or F -tests.

7 Conclusion

Given a conditionally valid binary instrument, nonparametric estimators of LATE and LATT can

be based on imputation or matching, as in Frölich (2007), or weighting by the estimated propensity

score, as proposed in this paper. The two approaches are shown to be asymptotically equivalent; in

particular, both types of estimators are
√
n-consistent and efficient. Higher order AMSE expansions

suggest that neither estimator generally dominates the other in finite samples. This is confirmed by

some simple Monte Carlo experiments. The MSE approximation leads to a data-driven bandwidth

selection rule and can also be used to pick between the two types of estimators in practice.

When the available binary instrument satisfies one-sided non-compliance, the proposed estima-

tor of LATT is compared with the ATT estimator of HIR to test the assumption that treatment

assignment is unconfounded given a vector of observed covariates. To our knowledge, this is the

first such test in the literature. We apply our methods to data obtained under the Job Train-

ing Partnership Act. A particularly robust finding is that the set of available covariates does not

fully explain mens’ participation decision. In contrast, we cannot reject the hypothesis that female

participation is essentially random.

A possible direction for future research is to develop tests of unconfoundedness for more general

(i.e., non-binary) instruments or finding conditions other than one-sided non-compliance that make

such tests possible.
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Appendix

In order to simplify notation, we set X1 = X throughout the Appendix. Furthermore, we use C > 0 to

denote a generic constant whose value might change from equation to equation.

A. Identification results

Establishing equations (1) and (2) We can write

E[W (1)−W (0)] = E{[D(1)−D(0)][Y (1)− Y (0)]}

= E[Y (1)− Y (0) | D(1)−D(0) = 1]P [D(1)−D(0) = 1]

= τ · E[D(1)−D(0)],

where the second equality follows from the fact that under monotonicity (Assumption 1(v)) the random

variable D(1)−D(0) is either zero or one. Similarly,

E[W (1)−W (0) | Z = 1] = E{[D(1)−D(0)][Y (1)− Y (0) | Z = 1]}

= E[Y (1)− Y (0) | D(1)−D(0) = 1, Z = 1]P [D(1)−D(0) = 1 | Z = 1]

= τt · E[D(1)−D(0) | Z = 1],

where the third equality follows from the fact that under monotonicity D(1)−D(0) = 1 implies D = Z.

The proof of Theorem 1 The moment conditions in Assumption 1(i) ensure that all expectations

stated in the theorem are well defined. We will only show equation (3); the remaining claims can be verified

similarly. Write

E

[
ZY

q(X)

]
= E

[
ZW

q(X)

]
= E

[
ZW (1)

q(X)

]
= E

{
ZE[W (1) | X,Z]

q(X)

}
= E

{
ZE[W (1) | X]

q(X)

}
= E

{
E(Z | X)E[W (1) | X]

q(X)

}
= E[W (1)],

where the first equality on the second line follows from Assumption 1(ii). An analogous argument shows

E[(1− Z)Y
/

(1− q(X))] = E[W (0)]; combining the two results yields (3).

B. The proof of Theorem 2

We give a detailed proof for the estimator τ̂ and a brief outline of the proof for τ̂t. The details of the latter

argument are analogous to those of the former and are omitted.

We analyze the numerator and denominator of τ̂ separately. Let

∆̂ =
1

n

n∑
i=1

{
ZiYi
q̂(Xi)

− (1− Zi)Yi
1− q̂(Xi)

}
, Γ̂ =

1

n

n∑
i=1

{
ZiDi

q̂(Xi)
− (1− Zi)Di

1− q̂(Xi)

}
.

so that τ̂ = ∆̂/Γ̂. The asymptotic properties of ∆̂ and Γ̂ are established in the following lemma.
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Lemma 2 Under the conditions of Theorem 2,
√
n(∆̂−∆) = 1√

n

∑n
i=1 δ(Yi, Di, Zi, Xi)+op(1) and

√
n(Γ̂−

Γ) = 1√
n

∑n
i=1 γ(Yi, Di, Zi, Xi) + op(1), where

δ(Yi, Di, Zi, Xi) =
ZiYi
q(Xi)

− (1− Zi)Yi
1− q(Xi)

−∆−
(
m1(Xi)

q(Xi)
+

m0(Xi)

1− q(Xi)

)
(Zi − q(Xi))

γ(Yi, Di, Zi, Xi) =
ZiDi

q(Xi)
− (1− Zi)Di

1− q(Xi)
− Γ−

(
µ1(Xi)

q(Xi)
+

µ0(Xi)

1− q(Xi)

)
(Zi − q(Xi))

Taking Lemma 2 as given for now, we can use the first order Taylor expansion of the bivariate function

f(∆̂, Γ̂) = ∆̂/Γ̂ around the point (∆,Γ) to write

√
n(τ̂ − τ) =

√
n

(
∆̂

Γ̂
− ∆

Γ

)
=

1

Γ

√
n(∆̂−∆)− τ

Γ

√
n(Γ̂− Γ) + op(1). (22)

Substituting the influence function representations given in Lemma 2 into (22) establishes the representation

in (8). It is easy to check that under Assumption 1(i), E[ψ(Y,D,Z,X)] = 0 and E[ψ2(Y,D,Z,X)] < ∞.

Applying the Lindeberg-Levy CLT and Slutsky’s theorem to (8) shows
√
n(τ̂ − τ)

d→ N (0,V).

To derive the asymptotic distribution of τ̂t, we write

∆̂t =

n∑
i=1

{
q̂(Xi)

( ZiYi
q̂(Xi)

− (1− Zi)Yi
1− q̂(Xi)

)}/ n∑
i=1

q̂(Xi),

Γ̂t =

N∑
i=1

{
q̂(Xi)

( ZiDi

q̂(Xi)
− (1− Zi)Di

1− q̂(Xi)

)}/ n∑
i=1

q̂(Xi),

so that τ̂t = ∆̂t/Γ̂t. Then:

Lemma 3 Under the conditions of Theorem 2,

√
n(∆̂t −∆t) =

1√
n

1

Q

n∑
i=1

q(Xi)

{
Zi(Yi −m1(Xi))

q(Xi)
− (1− Zi)(Yi −m0(Xi))

1− q(Xi)

+
(m1(Xi)−m0(Xi)−∆q)Zi

q(Xi)

}
+ op(1),

√
n(Γ̂t − Γt) =

1√
n

1

Q

n∑
i=1

q(Xi)

{
Zi(Di − µ1(Xi))

q(Xi)
− (1− Zi)(Di − µ0(Xi))

1− q(Xi)

+
(µ1(Xi)− µ0(Xi)− Γq)Zi

q(Xi)

}
+ op(1).

Combining Lemma 3 with a Taylor expansion argument as above establishes the influence function repre-

sentation (9), from which it follows that
√
n(τ̂t − τt)

d→ N (0,Vt).

We complete the proof of Theorem 2 by verifying Lemma 2. The proof of Lemma 3 is omitted.

The proof of Lemma 2 Our argument is based on Ichimura and Linton (2002) with the generalization

that X is allowed to be an r-dimensional vector rather than a scalar. For a matrix A = (aij) we write

‖A‖∞ = sup |aij | and ‖A‖1 =
∑
|aij |.
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STEP 1 (Some properties of q̂(Xi)). For x ∈ Rr and λ ∈ Nr define xλ = xλ1
1 · . . . · xλr

r ∈ R. For

a non-negative integer `, let xΛ(`) denote the vector (xλ)λ1+...+λr=` (along with some rule to order these

elements). Thus, xΛ(`) contains all polynomial terms of order exactly ` that can be constructed from the

components of x, and is interpreted as a row vector if x is a row vector and as a column vector if x is a

column vector. E.g., xΛ(0) = 1, (x1, . . . , xr)
Λ(1) = (x1, . . . , xr), (x1, x2)Λ(2) = (x2

1, x
2
2, x1x2), etc. For each

observation Xt on the vector of covariates, we define

X̃
(i)
t = [(X ′t −X ′i)Λ(0), (X ′t −X ′i)Λ(1), . . . , (X ′t −X ′i)Λ(r)]′.

Then the leave-one-out local polynomial regression estimator of q(Xi) is the first component of the vector

β̂ that solves minβ
∑
t:t6=iK

(
Xt−Xi

h

)
(Zt − X̃(i)′

t β)2. Letting e1 denote the first unit vector having the same

dimension as X
(i)
t , we can write this estimator as

q̂(Xi) = e′1

∑
t:t6=i

K

(
Xt −Xi

h

)
X̃

(i)
t X̃

(i)′
t

−1 ∑
t:t6=i

K

(
Xt −Xi

h

)
X̃

(i)
t Zt =

∑
t:t 6=i

ωitZt,

where ωit depends only on X1, ..., Xn and is given by

ωit = e′1

∑
j:j 6=i

K

(
Xj −Xi

h

)
X̃

(i)
j X̃

(i)′
j

−1

X̃
(i)
t K

(
Xt −Xi

h

)
. (23)

The first property we will need in later arguments is a bound on |ωit − ωti|. By Assumption 7, ωit =

ωti = 0 for ‖Xt −Xi‖∞ > h. Now assume ‖Xt −Xi‖∞ ≤ h. Let H = diag(1, hu1, ..., h
rur), where uj is a

vector of ones with the same dimensionality as (X ′t −X ′i)Λ(j). Then, noting that e′1H = e′1, we can write

ωit = e′1

H−1 1

nhr

∑
j:j 6=i

K

(
Xj −Xi

h

)
X̃

(i)
j X̃

(i)′
j H−1

−1

H−1 1

nhr
X̃

(i)
t K

(
Xt −Xi

h

)
.

Let the matrix inside the inverse operator be denoted as K̂(Xi). Then

|ωit − ωti| =
1

nhr

∣∣∣∣K (Xi −Xt

h

)∣∣∣∣× ∣∣∣e′1K̂−1(Xi)H
−1X̃

(i)
t − e′1K̂−1(Xt)H

−1X̃
(t)
i

∣∣∣
≤ 1

nhr

∣∣∣∣K (Xi −Xt

h

)∣∣∣∣
×

{∣∣∣e′1[K̂−1(Xi)− K̂−1(Xt)]H
−1X̃

(i)
t

∣∣∣+
∣∣∣e′1K̂−1(Xt)H

−1[X̃
(i)
t − X̃

(t)
i ]
∣∣∣} . (24)

The first term in the braces in (24) is bounded as follows. The elements of K̂(Xi) are of the form

1

nhr+
∑
λk

∑
j:j 6=i

(Xj −Xi)
λ
K

(
Xj −Xi

h

)
(25)

for some r-vector of nonnegative integers λ with 0 ≤
∑
λk ≤ 2r. Using arguments similar to those in, e.g.,

Section 3.7 of Fan and Gijbels (1996), one can show that (25) converges in probability to f(Xi)
∫
uλK(u)du

uniformly in Xi. Hence supi ‖K̂(Xi) − f(Xi)K‖∞ = op(1) for a constant, symmetric matrix K that only
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depends on the kernelK. By continuity and X compact, it follows that supi ‖K̂−1(Xi)− 1
f(Xi)

K−1‖∞ = op(1).

Since f is continuously differentiable and is bounded away from zero, |f−1(x1) − f−1(x2)| ≤ C‖x1 − x2‖∞
for all x1, x2 ∈ X . Combining these observations yields

‖K̂−1(Xi)− K̂−1(Xt)‖∞

≤ sup
i
‖K̂−1(Xi)− f−1(Xi)K−1‖∞ + ‖f−1(Xi)K

−1 − f−1(Xt)K−1‖∞ + sup
t
‖K̂−1(Xt)− f−1(Xt)K−1‖∞

≤C‖Xi −Xt‖∞ + op(1) = Ch+ op(1) ≡Mn,

where Mn = op(1) and is independent of Xi and Xt. Hence the first term in the braces in (24) is bounded by

Mn‖H−1X
(i)
t ‖1 ≤ M̃n, where M̃n incorporates a multiplicative constant that only depends on r and bounds

‖H−1X
(i)
t ‖1 (each component of H−1X

(i)
t is bounded by one since ‖Xt −Xi‖∞ ≤ h).

The second term within the braces in (24) is bounded as follows. Suppose that r is even. Then

H−1[X̃
(i)
t − X̃

(t)
i ] =

(
0, 2

(
X ′t −X ′i

h

)Λ(1)

, z2 , 2

(
X ′t −X ′i

h

)Λ(3)

, . . . , zr

)′
, (26)

where the zj , j even, are zero vectors with the same dimensionality as (X ′t −X ′i)Λ(j). (The only difference

when r is odd is that the last term in this alternating partition is not a zero vector.) Note that each

component of (26) is bounded by 2 since ‖Xt −Xi‖∞ ≤ h. Therefore it is possible to write∣∣∣e′1K̂−1(Xt)H
−1[X̃

(i)
t − X̃

(t)
i ]
∣∣∣ ≤ ∣∣∣∣ 1

f(Xt)
e′1K−1H−1[X̃

(i)
t − X̃

(t)
i ]

∣∣∣∣+Rn,

where Rn = op(1) and does not depend on Xi or Xt. By the symmetry properties of the kernel (Assump-

tion 7), the first row of the matrix K has zeros precisely at those positions at which the vector H−1[X̃
(i)
t −X̃

(t)
i ]

is nonzero. A straightforward linear algebra argument (available on request) shows that the first row of the

matrix K−1 also has zeros at the same positions. Hence, the second term in the braces in (24) is simply

bounded by Rn. Combining the bounds on the components of (24) shows that

|ωit − ωti| ≤
M̃n +Rn
nhr

∣∣∣∣K (Xt −Xi

h

)∣∣∣∣ , (27)

where M̃n+Rn = op(1) and does not depend on Xi or Xt. Finally, observe that the inequality holds for any

value of h, not just for ‖Xt −Xi‖∞ ≤ h. This is the bound we will need.

The second property of q̂(Xi) that we will make use of is its uniform convergence rate. As shown by

Masry (1996), the “include all” version of the estimator satisfies

sup
x∈X
|q̂(x)− q(x)| = Op

(
hr+1 +

√
log n

nhr

)
.

Given the range of h in Assumption 8 it follows that supi |q̂(Xi)− q(Xi)| = op(n
−1/4) for the include all as

well as the leave-one-out version.
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STEP 2 (Expanding ∆̂). We define notation similar to that in Ichimura and Linton (2002). Let w =

(y, d, z, x) and

Ψ(w,∆, q) ≡ zy

q
− (1− z)y

1− q
−∆.

Let Ψq and Ψqq denote the partial derivative of Ψ w.r.t. the argument q, and let Wi = (Yi, Di, Zi, Xi). Then

Ψ(Wi,∆, q(Xi)) =
ZiYi
q(Xi)

− (1− Zi)Yi
1− q(Xi)

,

Ψq(Wi,∆, q(Xi)) = −
(

ZiYi
q2(Xi)

+
(1− Zi)Yi

(1− q(Xi))2

)
,

Ψqq(Wi,∆, q(Xi)) =
2ZiYi
q3(Xi)

− 2(1− Zi)Yi
(1− q(Xi))3

,

and we further define

Sq(Xi) = E[Ψq(Wi,∆, q(Xi))|Xi] = −
(
m1(Xi)

q(Xi)
+

m0(Xi)

1− q(Xi)

)
,

ζi = Ψq(Wi,∆, q(Xi))− Sq(Xi),

εi = Zi − q(Xi),

βn(Xi) = E[q̂(Xi)|X1, ..., Xn]− q(Xi) =
∑
j:i 6=j

ωijq(Xj)− q(Xi),

where the last quantity is the bias of the estimator conditional on X1, . . . , Xn.

By a Taylor series expansion around q(Xi),

√
n(∆̂−∆) =

1√
n

n∑
i=1

Ψ(Wi,∆, q̂(Xi))

=
1√
n

n∑
i=1

Ψ(Wi,∆, q(Xi)) +
1√
n

n∑
i=1

Ψq(Wi,∆, q(Xi))(q̂(Xi)− q(Xi))

+
1√
n

n∑
i=1

Ψqq(Wi,∆, q
∗(Xi))(q̂(Xi)− q(Xi))

2

=
1√
n

n∑
i=1

Ψ(Wi,∆, q(Xi))

+
1√
n

n∑
i=1

Sq(Xi)(q̂(Xi)− q(Xi))

+
1√
n

n∑
i=1

ζi(q̂(Xi)− q(Xi))

+
1√
n

n∑
i=1

Ψqq(Wi,∆, q
∗(Xi))(q̂(Xi)− q(Xi))

2

≡J0 + J1 + J2 + J3,

where q∗(Xi) is a value between q̂(Xi) and q(Xi) for all i, and the J ’s are defined line by line. We further
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expand the J1 term as

J1 =
1√
n

n∑
i=1

Sq(Xi)(q̂(Xi)− q(Xi))

=
1√
n

n∑
i=1

Sq(Xi)
( ∑
j:j 6=i

ωijZj − q(Xi)
)

=
1√
n

n∑
i=1

Sq(Xi)
( ∑
j:j 6=i

ωij(εj + q(Xj))− q(Xi)
)

=
1√
n

n∑
i=1

Sq(Xi)εi +
1√
n

n∑
i=1

Sq(Xi)
( ∑
j:j 6=i

ωijεj − εi
)

+
1√
n

n∑
i=1

Sq(Xi)
( ∑
j:j 6=i

ωijq(Xj)− q(Xi)
)

=
1√
n

n∑
i=1

Sq(Xi)εi +
1√
n

n∑
i=1

εi

( ∑
j:j 6=i

ωjiSp(Xj)− Sp(Xi)
)

+
1√
n

n∑
i=1

Sq(Xi)βn(Xi)

≡ J11 + J12 + J13.

STEP 3 (Evaluating J0, J11, J12, J13, J2 and J3). By the central limit theorem, J0 and J11 are Op(1)

and together they give the influence function representation in Lemma 2. We will show that the rest of the

terms are op(1).

For J12, we claim that ωij ≈ ωji in that supi

∣∣∣∑j:i6=j(ωji − ωij)Sp(Xj)
∣∣∣ = op(1). By the bound in (27),

sup
i

∣∣∣ ∑
j:i 6=j

(ωji − ωij)Sp(Xj)
∣∣∣ ≤ sup

i

∑
j:i 6=j

|(ωji − ωij)||Sp(Xj)|

≤C(M̃n +Rn) sup
i

∑
j:j 6=i

1

nhr

∣∣∣K(Xj −Xi

h

)∣∣∣ = op(1) ·Op(1) = op(1).

The second inequality holds since Sp(x) is bounded on X . Further,

sup
x∈X

∣∣∣∣∣
n∑
i=1

1

nhr

∣∣∣K(Xj −Xi

h

)∣∣∣− f(x)

∫
|K(u)|du

∣∣∣∣∣ = op(1),

which implies supi
∑
j:j 6=i

1
nhr

∣∣∣K (Xj−Xi

h

)∣∣∣ = Op(1). Given

sup
i

∣∣∣ ∑
j:j 6=i

ωijSp(Xj)− Sp(Xi)
∣∣∣ = op(1),

it is true that conditional on the sample path of the Xi, with probability approaching one,
∑
j:j 6=i ωjiSp(Xj)−

Sp(Xi) is uniformly bounded over i and converges to zero uniformly over i. Also, the εi are mutually

independent conditional on the sample path of the Xi. Hence, conditional on the sample path of the Xi

with probability approaching one,

1√
n

n∑
i=1

εi

( ∑
j:j 6=i

ωjiSp(Xj)− Sp(Xi)
)

= op(1),

which is sufficient to show that J12 = op(1).
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For J13, observe that βn(x) is the (conditional) bias of q̂(x), which is of order hr+1
n uniformly (Masry

1996). By the assumptions on hn, we have supx∈X |βn(x)| = op(n
−1/2). It follows that

|J13| =
∣∣∣ 1√
n

n∑
i=1

Sp(Xi)βn(Xi)
∣∣∣ ≤ sup

x∈X

∣∣√nβn(x)
∣∣ 1
n

n∑
i=1

|Sp(Xi)| = op(1) ·Op(1) = op(1).

For J2, observe that supx∈X |q̂(x)− q(x)| = op(1) and argue similarly as in showing J12 = op(1).

Finally, for J3. Given that q̂(x) is uniformly bounded in probability on X , and q∗(Xi) is between q̂(Xi)

and q(Xi), it follows that q∗(Xi) is uniformly bounded and also bounded away from zero in probability.

Also, supi |q̂(Xi)− q(Xi)| = op(n
−1/4), so supi n

1/2(q̂(Xi)− q(Xi))
2 = op(1). Hence,

∣∣∣ 1√
n

n∑
i=1

Ψqq(Wi,∆, q
∗(Xi))(q̂(Xi)− q(Xi))

2
∣∣∣

≤
(

sup
i

1√
n

(q̂(Xi)− q(Xi))
2
) 1

n

n∑
i=1

∣∣∣Ψqq(Wi,∆, q
∗(Xi))

∣∣∣ = op(1) ·Op(1) = op(1).

As a result, we have

√
n(∆̂−∆) =

1√
n

n∑
i=1

Ψ(Wi,∆, q(Xi)) + Sq(Xi)εi + op(1) =
1√
n

n∑
i=1

δ(Yi, Di, Zi, Xi) + op(1),

where the function δ(·) is as defined in Lemma 2.

C. Second order asymptotic results

Inverse probability weighted estimators of ∆ and Γ with bias correction Following

Ichimura and Linton (2002), we define ∆̂b = ∆̂− b̂
2nh , where ∆̂ is the numerator of τ̂ , and

b̂ =
1

n

n∑
i=1

‖K‖2Ŝqq(Xi)
q̂(Xi)[1− q̂(Xi)]

f̂(Xi)
, (28)

with

Ŝqq(Xi) =
2m̂1(Xi)

q̂2(Xi)
− 2m̂0(Xi)

[1− q̂(Xi)]2
.

Ŝqq(Xi) is of course an estimate of the function Sqq(Xi) = E[Ψqq(Wi,∆, q(Xi)) | Xi]; cf. Appendix B. The

nonparametric estimates m̂0, m̂1 and q̂ are based are on local linear regression (use the leave-one-out version

for q). A kernel density estimator can used be for f̂ . The estimator Γ̂b is defined analogously (replace Yi

with Di throughout).
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Justifying equation (16) Substituting the influence function representations (10) into (13) gives

− 2√
n

(
1

Γ

√
n(∆̂−∆)− ∆

Γ2

√
n(Γ̂− Γ)

)(
1

Γ2
n(∆̂−∆)(Γ̂− Γ) +

2∆

Γ3
n(Γ̂− Γ)2

)
= − 2

Γ
√
n

[
1√
n

n∑
i=1

(δi − τγi) + op(n
−α)

]

×

 1

Γ2

(
1√
n

n∑
i=1

δi + op(n
−α)

)(
1√
n

n∑
i=1

γi + op(n
−α)

)
+

2∆

Γ3

(
1√
n

n∑
i=1

γi + op(n
−α)

)2


= − 2

n2Γ3

(
n∑
i=1

(δi − τγi)

)(
n∑
i=1

δi

)(
n∑
i=1

γi

)
− 4τ

n2Γ3

(
n∑
i=1

(δi − τγi)

)(
n∑
i=1

γi

)2

+ op(n
−α−1/2).

Considering the expectation of the first two terms:

− 2

n2Γ3
E

[(
n∑
i=1

(δi − τγi)

)(
n∑
i=1

δi

)(
n∑
i=1

γi

)]
= − 2

n2Γ3

n∑
i=1

E[(δi − τγi)δiγi] = − 2

nΓ3
E[(δ1 − τγ1)δ1γ1],

where, by random sampling, all cross product terms have zero expectations. Similarly,

− 4τ

n2Γ3
E

( n∑
i=1

(δi − τγi)

)(
n∑
i=1

γi

)2
 = − 4τ

nΓ3
E[(δ1 − τγ1)γ2

1 ].

Combining the two results above with the expectation of the remainder term gives equation (16).

The proof of Theorem 3 As argued in the main text, the non-neglected terms in expansions (17)

and (18) correspond to the first three terms of equation (15); the remainder term combines the remainder in

(15), all terms in (16) and the expectation of (14). As shown by Lemmas 4 and 5 below, one can take α = 1
10

in (16) and hence the remainder term is of the stated order (specifically, op(n
−3/5)). Thus, we can complete

the proof by arguing that a mean square expansion of the form (15) is valid for both types of estimators and

verifying the expressions for the constants C0, C1 and C2 given in Theorem 3.

Let Ỹ = Y − τD. To derive equation (15) for the imputation estimator first note that one can write

∆̂m =
1

n

n∑
i=1

[m̂1(Xi)−m̂0(Xi)] =
1

n

n∑
i=1

n∑
j=1

αijYj and Γ̂m =
1

n

n∑
i=1

[µ̂1(Xi)−µ̂0(Xi)] =
1

n

n∑
i=1

n∑
j=1

αijDj

where the weights αij depend only on X1, . . . , Xn and Z1, . . . , Zn. Therefore,

1

Γ
(∆̂m −∆)− ∆

Γ2
(Γ̂m − Γ) =

1

Γ
(∆̂m − τ Γ̂m)− 0

=
1

nΓ

n∑
i=1

n∑
j=1

αij Ỹj =
1

nΓ

n∑
i=1

[ ̂̃m1(Xi)− ̂̃m0(Xi)], (29)

where ̂̃m1 and ̂̃m0 are the local linear regression estimates of the functions m̃1(x) = E[Ỹ | Z = 1, X = x] and

m̃0(x) = E[Ỹ | Z = 0, X = x]. Regarding (29) as an estimator of 1
Γ (∆−τΓ) = 0, the mean square expansion

given in equation (15) follows directly from Lemma 4.3 of Kalyanaraman (2009). Verifying that C0 = G0,
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C1 = G1 and C2 = G2 is straightforward based on the generic expressions provided by Kalyanaraman (2009).

(That C0 = G0 = F0 also follows from the first order asymptotic results given in our Theorem 2 and the

fact that τ̂ , τ̂b and τ̂m are asymptotically equivalent.)

To derive equation (15) for the inverse probability weighted estimator we write

1

Γ
(∆̂b −∆)− ∆

Γ2
(Γ̂b − Γ) =

1

Γ
(∆̂b − τ Γ̂b)− 0

=
1

nΓ

n∑
i=1

{
ZiỸi
q̂(Xi)

− (1− Zi)Ỹi
1− q̂(Xi)

}
− 1

nΓ

n∑
i=1

‖K‖2 ̂̃Sqq(Xi)
q̂(Xi)[1− q̂(Xi)]

f̂(Xi)
, (30)

where ̂̃Sqq(Xi) = 2 ̂̃m1(Xi)
q̂2(Xi)

− 2 ̂̃m0(Xi)
[1−q̂(Xi)]2

. Regarding (30) as an estimator of 1
Γ (∆ − τΓ) = 0, the mean square

expansion given in equation (15) is a direct application of Theorem 2 in Ichimura and Linton (2002). Verifying

that C0 = F0, C1 = F1 and C2 = F2 is a matter of tedious but straightforward calculations.

Lemma 4 Under the assumptions of Theorem 3,
√
n(∆̂b −∆) = n−1/2

∑n
i=1 δi + op(n

−1/10) and
√
n(Γ̂b −

Γ) = n−1/2
∑n
i=1 γi + op(n

−1/10).

Proof: Let ∆̂ denote the inverse probability weighted estimator of ∆ without bias correction (i.e., ∆̂ is the

numerator of τ̂). For h ∝ n−2/5, the expansion of
√
n(∆̂−∆) given in equation (17) of Ichimura and Linton

(2002) is almost sufficient to show
√
n(∆̂ − ∆) = n−1/2

∑n
i=1 δi + op(n

−1/10) except that the last term is

Op(n
−1/10) instead of op(n

−1/10). This term can be further expanded as:

√
n(∆̂−∆)

= . . .+
1

2h
√
n

1

n

n∑
i=1

‖K‖2Sqq(Xi)
q(Xi)[1− q(Xi)]

f(Xi)
+Op(h

4
√
n)

= . . .+
1

2h
√
n
b̂+

1

2h
√
n

[
1

n

n∑
i=1

(
‖K‖2Sqq(Xi)

q(Xi)[1− q(Xi)]

f(Xi)
− b
)

+ (b− b̂)

]
+Op(h

4
√
n), (31)

where b = ‖K‖2E
[
Sqq(Xi)

q(Xi)[1−q(Xi)]
f(Xi)

]
and b̂ is as defined in (28). The first term in (31) is Op(n

−1/10)

and corresponds to the bias correction applied to ∆̂. Thus, it disappears from the analogous expansion of

∆̂b. The two terms inside the square brackets are both Op(n
−1/2); if multiplied by

√
n, the first one satisfies

a CLT and, as argued by Ichimura and Linton (2002),
√
n(b̂−b) admits an influence function representation.

Since 1
h
√
n
Op(n

− 1
2 ) = Op(n

− 1
2−

1
10 ) = op(n

− 1
10 ) and Op(h

4
√
n) = op(n

− 1
10 ), the proof is complete.

Lemma 5 Under the assumptions of Theorem 3,
√
n(∆̂m−∆) = n−1/2

∑n
i=1 δi+op(n

−1/10) and
√
n(Γ̂m−

Γ) = n−1/2
∑n
i=1 γi + op(n

−1/10).

The proof of Lemma 5 relies on a sequence of auxiliary lemmas. These will be stated and proven first

and then we return to the proof of Lemma 5. For a given sample size n, let n1 ≡
∑n
i=1(Zi = 1), and suppose

that the observations in the sample are arranged so that so that the first n1 are those with Zi = 1. By
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the law of large numbers n1/n → P (Z = 1) for almost all realizations of {Zi}∞i=1, and hence n1 → ∞ as

n→∞, at the same rate, almost surely. All arguments in the rest of Appendix C will be conditional on the

realization of the instrument sequence {Zi}∞i=1. This conditioning will not be made explicit in the notation

(e.g. when taking expectations). All subsequent results will hold for almost all realizations of {Zi}∞i=1, and

hence unconditionally as well.

We rewrite the the imputation estimator for ∆ as

∆̂m =
1

n

n∑
i=1

[m̂1(Xi)− m̂0(Xi)] =
1

n

n1∑
i=1

[m̂1(Xi)− m̂0(Xi)] +
1

n

n∑
i=n1+1

[m̂1(Xi)− m̂0(Xi)],

and define

νj = Yj −m1(Xj)

M1n(x) =

 κ0(x) κ1(x)

κ1(x) κ2(x)

 , κ`(x) =

∫
1

h

( t− x
h

)`
K
( t− x

h

)
fX|Z=1(t)dt,

M̂1n(x) =

 κ̂0(x) κ̂1(x)

κ̂1(x) κ̂2(x)

 , κ̂`(x) =
1

n1h

∑
j:Zj=1

(Xj − x
h

)`
K
(Xj − x

h

)
,

ξm1 (Yj , Xj , x) = (1, 0) ·M−1
1n (x) ·

 1

Xj−x
h

 ·K(Xj − x
h

)
· νj .

Using the notation defined above, we can express the estimator m̂1(x) in a way similar to Appendix B:

m̂1(x) = (1, 0)M̂−1
1n (x)

1

n1h

n1∑
j=1

 1

Xj−x
h

K
(Xj − x

h

)
Yj .

Therefore,

m̂1(x)−m1(x) = (1, 0)M̂−1
1n (x)

1

n1h

n1∑
j=1

 1

Xj−x
h

K
(Xj − x

h

)
νj

+ (1, 0)M̂−1
1n (x)

1

n1h

n1∑
j=1

 1

Xj−x
h

K
(Xj − x

h

)
m1(Xj)−m1(x)

≡ A(x) +B(x),

where A(x) and B(x) are defined line by line.

Lemma 6 Under the assumptions of Theorem 3,

A(x) =
1

n1

n1∑
j=1

ξm1 (Yj , Xj , x) +R1(x),

where n
−1/2
1

∑n1

j=1R1(Xj) = op(n
−1/10).
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Proof of Lemma 6: The lemma is similar to Lemma 2 of Heckman et al. (1998) but with the stronger

conclusion that n
−1/2
1

∑n1

j=1R1(Xj) converges to zero at the rate op(n
−1/10). (Also, we specialize to the case

where X is a scalar.) We write

A(x) = (1, 0)M−1
1n (x)

1

n1h

n1∑
j=1

 1

Xj−x
h

K
(Xj − x

h

)
νj

+ (1, 0)(M̂−1
1n (x)−M−1

1n (x))
1

n1h

n1∑
j=1

 1

Xj−x
h

K
(Xj − x

h

)
νj

=
1

n1

n1∑
j=1

ξm1 (Yj , Xj , x) +R1(x),

where R1(x) is defined by the expression on the second line.

Let (r1
n0(x), r2

n0(x)) = (1, 0)M−1
1n (x) be the first row of M−1

1n (x), and (r̂1
n(x), r̂2

n(x)) = (1, 0)M̂−1
1n (x) be

the first row of M̂−1
1n (x). Given ε > 0, we define the ε-neighborhoods of the functions r`n0(x), ` = 1, 2, as

N `
n =

{
r(x) : sup

x∈X
|r(x)− r`n0(x)| ≤ ε

}
, ` = 1, 2.

We consider two zero mean stochastic processes indexed by the elements of N `
n, ` = 1, 2:

n1∑
j=1

n1∑
i=1

g`rn(νi, Xi, Xj), rn ∈ N `
n,

where

g`rn(νi, Xi, Xj) = n−
3
2h−1rn(Xj)

(Xi −Xj

h

)`−1

K
(Xi −Xj

h

)
νi.

Interest in these processes is justified by the fact that

1
√
n1

n1∑
j=1

R1(Xj) =

n1∑
j=1

n1∑
i=1

g1
r̂1n

(νi, Xi, Xj)− g1
r1n0

(νi, Xi, Xj) (32)

+

n1∑
j=1

n1∑
i=1

g2
r̂2n

(νi, Xi, Xj)− g2
r2n0

(νi, Xi, Xj). (33)

It follows from Lemmas 5 and 6 of Heckman et al. (1998) that

sup
x∈X
|r̂`n(x)− r`n0(x)| = op(

√
h), (34)

so that r̂`n ∈ N `
n for n sufficiently large.

Our goal is to show that (32) and (33) are both op(n
−1/10). First set ` = 1. For any fixed sequence

rn ∈ N1
n, decompose the process of interest as

n1∑
j=1

n1∑
i=1

g1
rn(νi, Xi, Xj) =

n1∑
i=1

g1
rn(νi, Xi, Xi) +

∑
j 6=i

g1
rn(νi, Xi, Xj). (35)
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For the first term on the rhs of (35), we have

n1∑
i=1

g1
rn(νi, Xi, Xi) =

1

nh

(
1√
n

n1∑
i=1

rn(Xi)νiK(0)

)
= Op(n

−1h−1) = Op(n
− 3

5 )

where the result follows from the CLT, the fact that E[rn(Xi)K(0)νi] = 0, and h ∝ n−
2
5 . Further, it is

possible to show that the process
∑n1

i=1 g
1
rn(νi, Xi, Xi) is stochastically equicontinuous in rn in a neighborhood

around r1
n0. The argument is very similar to that used by Heckman et al. (1998) following their Lemma 3,

and is omitted. Then (34) implies, at least,

n1∑
i=1

g1
r̂1n

(νi, Xi, Xi)−
n1∑
i=1

g1
r1n0

(νi, Xi, Xi) = op(n
−3/5). (36)

For the second term in (35), we further define

ϑi ≡ (νi, Xi),

grn(ϑi, ϑj) =
g1
rn(νi, Xi, Xj) + g1

rn(νj , Xj , Xi)

2
,

ϕrn(ϑi) = E
[
grn(ϑi, ϑj)

∣∣∣ϑi] ,
g̃rn(ϑi, ϑj) = grn(ϑi, ϑj)− ϕrn(ϑi)− ϕrn(ϑj).

Using these definitions, we can write

∑
j 6=i

g1
rn(νi, Xi, Xj) =

∑
j 6=i

g̃rn(ϑi, ϑj) + 2(n1 − 1)

n1∑
i=1

ϕrn(ϑi). (37)

Consider Un ≡ 1
2n1(n1−1)

∑
j 6=i h

− 1
2n

3
2
1 g̃rn(ϑi, ϑj). Since E[g̃rn(ϑi, ϑj)

∣∣ϑi] = 0 and E[ϕrn(ϑi)] = 0, Un is a

degenerate U -statistic whose kernel depends on n. The kernel further satisfies

E

[(
h−

1
2n

3
2
1 g̃rn(ϑi, ϑj)

)2
]

=
n3

1

h
E

[(
1

2
g1
rn(νi, Xi, Xj)− ϕrn(ϑi) +

1

2
g1
rn(νj , Xj , Xi)− ϕrn(ϑj)

)2
]

≤ n3
1

h
E

[(
1

2
g1
rn(νi, Xi, Xj) +

1

2
g1
rn(νj , Xj , Xi))

)2
]

≤ n3
1

h
2

(
E

[(
1

2
g1
rn(νi, Xi, Xj)

)2
]

+ E

[(
1

2
g1
rn(νj , Xj , Xi)

)2
])

=
n3

1

h
E[(g1

rn(νi, Xi, Xj))
2]

≤ C

h2
= Cn1

1

n1h2
= Op(n1) · op(1) = op(n1).

The first inequality above holds since E[(Q1 − E[Q1|Q2])2] ≤ E[Q2
1] for any two random variables Q1 and

Q2 with finite second moments. The second inequality follows from the fact that (a + b)2 ≤ 2(a2 + b2)

for any two real numbers a and b. The equality on the fourth line holds since E[(g1
rn(νi, Xi, Xj))

2] =

E[(g1
rn(νj , Xj , Xi))

2]. Finally, the inequality on the last line holds since E[(g1
rn(νi, Xi, Xj))

2] ≤ Cn−3
1 h−1.
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Thus, we can apply Lemma 3.1 of Powell et al. (1989) to Un, which yields
√
n1Un = op(1). This is enough

to show that

√
n1

 1

n2
1

∑
j 6=i

n
3
2
1 g̃rn(ϑi, ϑj)

 =
∑
j 6=i

g̃rn(ϑi, ϑj) = op(
√
h) = op(n

−1/5).

It is possible to show, as above, that the process
∑n1

i 6=j g̃rn(ϑi, ϑj) is also stochastically equicontinuous in rn

in a neighborhood around r1
n0. Then (34) implies, at least,

n1∑
i 6=j

g̃r̂1n(ϑi, ϑj)−
n1∑
i 6=j

g̃r1n0
(ϑi, ϑj) = op(n

−1/5). (38)

Turning to the second term in (37),

2ϕrn(ϑi) = E
[
g1
rn(νi, Xi, Xj)

∣∣∣νi, Xi

]
= n

−3
2 νi

∫
rn(u)

1

h
K
(Xi − u

h

)
fX|Z=1(u)du

= n
−3
2 νi

∫
rn(Xi + uh)K(u)fX|Z=1(Xi + uh)du (39)

≡ n
−3
2 νiIrn(Xi).

Therefore,

2(n1 − 1)

n1∑
i=1

ϕrn(ϑi) =
n1 − 1

n1

1
√
n1

n1∑
i=1

νiIrn(Xi) = Op(1), (40)

since (n1 − 1)/n1 = Op(1), E[ϕr1n(ϑi)] = 0 and E[ϕr1n(ϑi)
2] < ∞. Again, it is possible to show that the

process 2(n1 − 1)
∑n1

i=1 ϕrn(ϑi) is stochastically equicontinuous in rn around a neighborhood of the zero

function. Further, it follows from (39) that a · ϕrn(ϑi) + b · ϕr′n(ϑi) = ϕarn+br′n
(ϑi) for all real numbers a, b

and functions rn, r
′
n. Then (40) and the fact that supx∈X |r̂1

n(x)/
√
h− r1

n0(x)/
√
h| = op(1) implies

1√
h

2(n1 − 1)

n1∑
i=1

ϕr̂1n(ϑi)−
1√
h

2(n1 − 1)

n1∑
i=1

ϕr1n0
(ϑi)

=2(n1 − 1)

n1∑
i=1

ϕr̂1n/
√
h−r1n0/

√
h(ϑi) = op(1).

As a result,

2(n1 − 1)

n1∑
i=1

ϕr̂1n(ϑi)− 2(n1 − 1)

n1∑
i=1

ϕr1n0
(ϑi) = op(

√
h) = op(n

−1
5 ) (41)

Combining (36), (38) and (41) shows that (32) is op(n
−1/10) [in fact, op(n

−1/5)]. Similar arguments apply

to (33), completing the proof.

Lemma 7 Under the assumptions of Theorem 3,

B(x) = b(x) +R2(x) (42)

with b(x) = Op(h
2) and n

−1/2
1

∑n1

j=1R2(Xj) = op(n
−1/10).
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Proof of Lemma 7: We rewrite B(x) as

B(x) =(1, 0)M̂−1
1n (x)

 E
[
m1(Xj)K

(
Xj−x
h

)]
E
[
m1(Xj)K

(
Xj−x
h

)(
Xj−x
h

)]
−m1(x)

+(1, 0)M̂−1
1n (x)

 1
n1h

∑n1

j=1m1(Xj)K
(
Xj−x
h

)
− E

[
m1(Xj)K

(
Xj−x
h

)]
1
n1h

∑n1

j=1m1(Xj)K
(
Xj−x
h

)(
Xj−x
h

)
− E

[
m1(Xj)K

(
Xj−x
h

)(
Xj−x
h

)]


≡b(x) +R2(x),

where b(x) and R2(x) are defined line by line. First, using an argument similar to the proof of Lemma 7 of

Heckman et al. (1998), b(x) = O(h2). Second, the assertion involving the remainder R2(x) can be proven in

a way similar to Lemma 6.

Lemma 8 Under the assumptions of Theorem 3,

1√
n

∑
i:Zi=1

m̂1(Xi)−m1(Xi) =
1√
nn1

∑
i:Zi=1

∑
j:Zj=1

ξm1 (Yj , Xj , Xi) + op(n
−1
10 )

1√
n

∑
i:Zi=0

m̂1(Xi)−m1(Xi) =
1√
nn1

∑
i:Zi=0

∑
j:Zj=1

ξm1 (Yj , Xj , Xi) + op(n
−1
10 ).

Proof of Lemma 8: Recall that m̂1(Xi)−m1(Xi) = A(Xi)+B(Xi). To show the first equation, apply Lem-

mas 6, 7 and the fact that n−1/2
∑
i:Zi=1 b(Xi) = Op(

√
nh2) = op(n

−1/10) and n1/n = P (Z = 1)+Op(n
−1/2).

To show the second equation, one needs the additional facts that 1√
n

∑n
j=n1+1R1(Xj) = op(n

− 1
10 ) and

1√
n

∑n
j=n1+1R2(Xj) = op(n

− 1
10 ). These are established in a way similar to Lemmas 6 and 7.

Lemma 9 Under the assumptions of Theorem 3,

1√
nn1

∑
i:Zi=1

∑
j:Zj=1

ξm1 (Yj , Xj , Xi) =
1√
n

∑
j:Zj=1

E[ξm1 (Yj , Xj , X)|Yj , Xj ] + op(n
− 1

10 ),

where the expectation is taken w.r.t. the distribution fX|Z=1(x). Furthermore,

1√
n(n− n1)

∑
i:Zi=0

∑
j:Zj=1

ξm1 (Yj , Xj , Xi) =
1√
n

∑
j:Zj=1

E[ξm1 (Yj , Xj , X)|Yj , Xj ] + op(n
− 1

10 ),

where the expectation is taken w.r.t. the distribution fX|Z=0(x).

Proof of Lemma 9: Note that

n
− 3

2
1

∑
i:Zi=1

∑
j:Zj=1

ξm1 (Yj , Xj , Xi) =

n1∑
i=1

n1∑
j=1

g1
r1n0

(Yj , Xj , Xi) + g2
r2n0

(Yj , Xj , Xi), and

n
− 1

2
1

∑
j:Zj=1

E[ξm1 (Yj , Xj , X)|Yj , Xj ] =
n1

n1 − 1
2(n1 − 1)

n1∑
i=1

ϕr1n(ϑi) + ϕr2n(ϑi)

= 2(n1 − 1)

n1∑
i=1

(
ϕr1n(ϑi) + ϕr2n(ϑi)

)
+Op(n

−1
1 ).
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Hence, using the arguments in the proof of Lemma 6 and the fact that n1/n = P (Z = 1) + Op(n
−1/2), we

can show

1√
nn1

∑
i:Zi=1

∑
j:Zj=1

ξm1 (Yj , Xj , Xi)−
1√
n

∑
j:Zj=1

E[ξm1 (Yj , Xj , X)|Yj , Xj ] = op(n
− 1

10 ),

which is the first assertion in Lemma 9. The proof of the second assertion is similar.

Lemma 10 Under the assumptions of Theorem 3, and for i 6= j,

E[ξm1 (Yj , Xj , Xi)|Yj , Xj , Zj = 1, Zi = 1] = (Yj −m1(Xj))(1 +Op(h))

E[ξm1 (Yj , Xj , Xi)|Yj , Xj , Zj = 1, Zi = 0] = (Yj −m1(Xj))
fX|Z=0(Xj)

fX|Z=1(Xj)
(1 +Op(h)).

Proof of Lemma 10: It is straightforward to show that

κ0(x) =

∫
1

h
K
(xj − x

h

)
fX|Z=1(xj)dxj = fX|Z=1(x)k0 +Op(h

2),

κ1(x) =

∫
1

h

(xj − x
h

)
K
(xj − x

h

)
fX|Z=1(xj)dxj = Op(h)

κ2(x) =

∫
1

h

(xj − x
h

)2

K
(xj − x

h

)
fX|Z=1(xj)dxj = fX|Z=1(x)k2 +Op(h

2),

where k` =
∫
u`K(u)du. Hence,

M−1
1n (x) =

1

fX|Z=1(x)

 k−1
0 +O(h) O(h)

O(h) k−1
2 +O(h)

 .

Therefore,

E[ξm1 (Yj , Xj , Xi)|Yj , Xj , Zj = 1, Zi = 1]

=(Yj −m1(Xj))

∫
1

h

1

fX|Z=1(xi)

( 1

k0
+O(h) +O(h)

(Xj − xi
h

))
K
(Xj − xi

h

)
fX|Z=1(xi)dxi

=(Yj −m1(Xj))(1 +O(h)).

This establishes the first assertion in Lemma 10. The proof of the second assertion is similar.

Lemma 11 Under the assumptions of Theorem 3,

1√
n

∑
j:Zj=1

E[ξm1 (Yj , Xj , X)|Yj , Xj ] =
1√
n

∑
j:Zj=1

(Yj −m1(Xj)) + op(n
− 1

10 )

1√
n

∑
j:Zj=0

E[ξm1 (Yj , Xj , X)|Yj , Xj ] =
1√
n

∑
j:Zj=0

(Yj −m1(Xj))
fX|Z=0(Xj)

fX|Z=1(Xj)
+ op(n

− 1
10 ).
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Proof of Lemma 11: From Lemma 10, it follows that

1√
n

∑
j:Zj=1

E[ξm1 (Yj , Xj , X)|Yj , Xj ]−
1√
n

∑
j:Zj=1

(Yj −m1(Xj)) =
1√
n

∑
j:Zj=1

(Yj −m1(Xj))bj

where bj ’s are Op(h) uniformly and bj only depends on Xj . Hence, it is true that

1√
n

∑
j:Zj=1

(Yj −m1(Xj))bj = Op(h) = op(n
− 1

10 ).

The proof of the second assertion is similar.

Lemma 12 Under the assumptions of Theorem 3,

1√
n

∑
i:Zi=1

m̂1(Xi)−m1(Xi) =
1√
n

∑
j:Zj=1

(Yj −m1(Xj)) + op(n
−1
10 ),

1√
n

∑
i:Zi=0

m̂1(Xi)−m1(Xi) =
1√
n

∑
j:Zj=1

(Yj −m1(Xj))
1− q(Xj)

q(Xj)
+ op(n

−1
10 ),

1√
n

∑
i:Zi=1

m̂0(Xi)−m0(Xi) =
1√
n

∑
j:Zj=0

(Yj −m0(Xj))
q(Xj)

1− q(Xj)
+ op(n

−1
10 ),

1√
n

∑
i:Zi=0

m̂0(Xi)−m0(Xi) =
1√
n

∑
j:Zj=0

(Yj −m0(Xj)) + op(n
−1
10 ).

Proof of Lemma 12: The first assertion follows directly from combining Lemmas 8, 9 and 11. To show

the second equation, let n0 = n− n1 and again combine Lemmas 8, 9 and 11 to obtain

1√
n

∑
i:Zi=0

m̂1(Xi)−m1(Xi)

=
1√
n

n0

n1

∑
j:Zj=1

(Yj −m1(Xj))
fX|Z=0(Xj)

fX|Z=1(Xj)
+ op(n

−1
10 )

=
1√
n

(P (Z = 0)

P (Z = 1)
+Op(n

−1
2 )
) ∑
j:Zj=1

(Yj −m1(Xj))
P (Z = 1)

P (Z = 0)

1− q(Xj)

q(Xj)
+ op(n

−1
10 )

=
1√
n

∑
j:Zj=1

(Yj −m1(Xj))
1− q(Xj)

q(Xj)
+ op(n

−1
10 ).

The second equality holds by Bayes’ Theorem and the fact that n0/n1 = P (Z = 0)/P (Z = 1) +Op(n
−1/2).

The third equality is implied by 1√
n

∑
j:Zj=1(Yj − m1(Xj))

1−q(Xj)
q(Xj) = Op(1). The last two assertions in

Lemma 12 follow from the first two by switching between Z = 0 and Z = 1 throughout.

Now we are in a position to provide a simple proof to Lemma 5.
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Proof of Lemma 5: We have

√
n(∆̂m −∆)

=
√
n

[
1

n

n∑
i=1

(
m̂1(Xi)− m̂0(Xi)−∆

)]

=
1√
n

n∑
i=1

(
m̂1(Xi)−m1(Xi)

)
− 1√

n

n∑
i=1

(
m̂0(Xi)−m0(Xi)

)
+

1√
n

n∑
i=1

(
m1(Xi)−m0(Xi)−∆

)
=

1√
n

n∑
i=1

δi + op(n
−1
10 ).

The last line holds by splitting the first two sums according to Zi = 0 versus Zi = 1 and applying Lemma 12

to each piece. The proof for the estimator Γ̂m is similar and we omit it.

D. Efficiency arguments

The proof of Theorem 5 First, we provide some simple facts. Under the conditions of Theorem 5,

including one-sided non-compliance, the following expressions hold true:

p =P (D = 1) = P (Z = 1, D(1) = 1) = P (D(1) = 1|Z = 1)P (Z = 1) = ΓtQ,

p(x) =P (D = 1|X = x) = P (D(1) = 1|Z = 1, X = x)P (Z = 1|X = x) = µ1(x)q(x),

µ0(x) =E[D|Z = 0, X = x] = E[D(0)|X = x] = 0.

Furthermore,

m1(x) =E[Y |Z = 1, X = x]

=E[Y |Z = 1, D = 1, X]P [D = 1|Z = 1, X = x]

+ E[Y |Z = 1, D = 0, X]P [D = 0|Z = 1, X = x]

=E[Y (1)|Z = 1, D = 1, X = x]P [D(1) = 1|Z = 1, X = x]

+ E[Y (0)|Z = 1, D = 0, X = x]P [D(1) = 0|Z = 1, X = x]

=E[Y (1)|X = x]µ1(x) + E[Y (0)|X = x](1− µ1(x))

=ρ1(x)− (1− µ1(x))(ρ1(x)− ρ0(x))

and

m0(x) =E[Y |Z = 0, X = x]

=E[Y |Z = 0, D = 0, X = x]

=E[Y (0)|Z = 0, D = 0, X = x] = E[Y (0)|X = x] = ρ0(x).

Note that the fourth equality involving the m1(x) term holds because the IV assumption and unconfound-

edness assumption hold jointly as in (20). In general, this equality will not hold when Assumption 1 and
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Assumption 2 hold, but do not hold jointly. This is the reason we require a stronger condition in Theorem

5. The second equality regarding the m0(x) term holds since D = 0 when Z = 0. As a result, adding D = 0

does not change the conditional expectation.

We define

φt(Y,D,X)

=
p(X)

p

{
D(Y − ρ1(X))

p(X)
− (1−D)(Y − ρ0(X))

(1− p(X))
+
D(ρ1(X)− ρ0(X)− βt)

p(X)

}

≡p(X)

p
{φ1 − φ2 + φ3} ,

and rewrite ψt(Y,D,Z,X) as

ψt(Y,D,Z,X)

=
q(X)

QΓt

{
Z
[
Y −m1(X)− τt(D − µ1(X))

]
q(X)

−
(1− Z)

[
Y −m0(X)− τt(D − µ0(X))

]
1− q(X)

+
Z
[
m1(X)−m0(X)− τt(µ1(X)− µ0(X))

]
q(X)

}
,

=
p(X)

p

1

µ1(X)

{
Z(Y − ρ1(X))

q(X)
+
Z(Y − µ1(X))(ρ1(X)− ρ0(X))

q(X)
− Zγt(D − µ1(X))

q(X)

− (1−X)(Y − ρ0(X))

1− q(X)
+
Z(ρ1(X)− ρ0(X)− βt)µ1(X)

q(X)

}

=
p(X)

p

{
Z(Y − ρ1(X))

p(X)
+
Z(Y − µ1(X))(ρ1(X)− ρ0(X))

p(X)
− Zβt(D − µ1(X))

p(X)

− (1− Z)(Y − ρ0(X))

(1− q(X))µ1(X)
+
X(ρ1(X)− ρ0(X)− βt)µ1(X)

p(X)

}

=
p(X)

p

{
Z(Y − µ1(X))

p(X)
+
Z(Y − µ1(X))(ρ1(X)− ρ0(X))

p(X)
− Zβt((D − 1) + (1− µ1(X)))

p(X)

− (1− Z)(Y − ρ0(X))

(1− q(X))µ1(X)
+
D(ρ1(X)− ρ0(X)− βt)µ1(X)

p(X)

}

=
p(X)

p

{
Z(Y − µ1(X))

p(X)
− (1− Z)(Y − ρ0(X))

(1− q(X))µ1(X)
+
X(ρ1(X)− ρ0(X)− βt)

p(X)
− Zβt(D − 1))

p(X)

}

≡p(X)

p
{ψ1 − ψ2 + ψ3 − ψ4} .

Note that

E[φ1ψ1|X] =
E
[
ZD(Y − ρ1(X))2

∣∣X]
p2(X)

=
E
[
D(Y − ρ1(X))2

∣∣X]
p2(X)

=
E
[
D(Y − ρ1(X))2

∣∣X,D = 1
]
p(D = 1|X = x)

p2(X)
=
σ2

1(X)

p(X)
,
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where σ2
1(X) = V (Y (1)|X). Also, E[φ1ψ2] = 0 since (1− Z)D = 0 with probability one and E[φ1ψ4|X] = 0

since D(1−D) = 0. Note that

E[φ1ψ3|X] =
ρ1(X)− ρ0(X)− βt

p2(X)
E[DZ(Y − ρ1(X))|X]

=
ρ1(X)− ρ0(X)− βt

p2(X)
E[D(Y (1)− ρ1(X))|X] = 0,

where the first equality in second line holds since ZD = 1 with probability one and the second equality holds

since E[D(Y (1)− ρ1(X))|X] = 0. Furthermore,

E[φ1ψ1|X] =
E[Z(1−D)(Y − ρ1(X))(Y − ρ0(X))|X]

p(X)(1− p(X))

=
E[Z(1−D)(Y − ρ1(X))(Y − ρ0(X))|X,Z = 1, D = 0]P (Z = 1, D = 0|X)

p(X)(1− p(X))

=
E[(Y (0)− ρ1(X))(Y (0)− ρ0(X))|X,Z = 1, D = 0](1− µ1(X))q(X)

p(X)(1− p(X))

=
σ2

0(X)(1− µ1(X))q(X)

p(X)(1− p(X))
=

σ2
0(X)

1− p(X)

1− µ1(X)

µ1(X)
,

E[φ1ψ2|X] =
E[(1− Z)(1−D)(Y − ρ0(X))2|X]

(1− p(X))(1− q(X))µ1(X)

=
E[(1− Z)(1−D)(Y − ρ0(X))2|X,Z = 0, D = 0]P (Z = 0, D = 0|X)

(1− p(X))(1− q(X))µ1(X)

=
E[(Y (0)− ρ0(X))2|X,D = 0]P (Z = 0|X)

(1− p(X))(1− q(X))µ1(X)

=
σ2

0(X)(1− q(X))

(1− p(X))(1− q(X))µ1(X)
=

σ2
0(X)

1− p(X)

1

µ1(X)
.

Also, we have E[φ2ψ3] = 0, E[φ2ψ4] = 0, E[φ3ψ1] = 0, E[φ3ψ2] = 0 and E[φ3ψ4] = 0. Finally,

E[φ3ψ3] =
E[D(ρ1(X)− ρ0(X)− βt)2|X]

p2(X)
=

(ρ1(X)− ρ0(X)− βt)2

p(X)
.

Consequently,

Cov(φt, ψt) =E[φtψt]

=E

[
p2(X)

p

{σ2
1(X)

p(X)
− σ2

0(X)

1− p(X)

1− µ1(X)

µ1(X)

+
σ2

0(X)

1− p(X)

1

µ1(X)
+

(ρ1(X)− ρ0(X)− βt)2

p(X)

}]
=E[φ2

t ] = V ar(φt).

This shows Theorem 5.
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